Structural, Optical, and Photovoltaic Properties of Tetracene Thin Films

  • M. P. Gorishnyi Institute of Physics, Nat. Acad. of Sci. of Ukraine
  • A. B. Verbitsky Institute of Physics, Nat. Acad. of Sci. of Ukraine
Keywords: tetracene thin films, Al–Tc–Au heterostructures, photovoltaic response

Abstract

The structure, absorption spectra, and photovoltaic response of tetracene (Tc) thin films 120 and 200 nm in thickness deposited in a vacuum of 6.5 MPa onto different substrates at room temperature have been studied. The photovoltaic response is measured by the method of capacitor cell. It is found that island films are formed on glass and quartz substrates, whereas solid polycrystalline films on copper ones, which is a result of the different interaction energies of Tc molecules with one another and with substrate molecules, molecules of ITO layers, and carbon atoms on the substrate surface. In quasi-amorphous films at a temperature of 4.2 K, excited molecules are deformed stronger as compared to those in polycrystalline films and free molecules at 300 K.
The photo-emf Vf at the front (illuminated) free surfaces of Tc films is negative in the spectral interval of 1.637–3.258 eV, which testifies to the hole photoconductivity in the films. The photo-emf Vr at the rear surface of 120-nm Tc films (illumination through the ITO electrode, which directly contacted with the Tc film) changed its sign in the spectral intervals of 2.193–2.494 and 2.927–3.153 eV as the oxygen concentration in the measuring cell decreased, which testifies to a change of the energy band bending in the Tc films near their rear and front (free) surfaces.

References

N. Geacintov, M. Pope, and H. Kallman, J. Chem. Phys. 45, 2639 (1966). http://dx.doi.org/10.1063/1.1727984 http://www.ncbi.nlm.nih.gov/pubmed/5977031

A.K. Ghosh and T.Feng, J. Appl. Phys. 44, 2781 (1973). http://dx.doi.org/10.1063/1.1662650

R. Signerski, J. Kalinowski, I. Koropecky et al., Thin Solid Films 121, 175 (1984). http://dx.doi.org/10.1016/0040-6090(84)90301-8

P.J. Reucroft, P.L. Kronick, and E.E. Hillman. Mol. Cryst. Liq. Cryst. 6, 247 (1969).

G. Horowitz. J. Mater. Res. 19, 1946 (2004). http://dx.doi.org/10.1557/JMR.2004.0266

F. Cicoira, C. Santato, F. Dinelli et al., Adv. Funct. Mater. 15, 375 (2005). http://dx.doi.org/10.1002/adfm.200400278

J.-M. Choi, J. Lee, D.K. Hwang et al., Appl. Phys. Lett. 88, 043508 (2006). http://dx.doi.org/10.1063/1.2168493

Y. Xia, V. Kalinari, and C.-D. Frislie. Appl. Phys. Lett. 90, 162106 (2007). http://dx.doi.org/10.1063/1.2724895

Md.M. Islam, J. Bangladesh Chem. Soc. 25, 194 (2012). 10. C.-T. Chien and C.-C. Lin, J. Mater. Chem. 22, 13070 (2012).

A. Hepp, H. Heil, W. Weise et al., Phys. Rev. Lett. 91, 157406 (2003). http://dx.doi.org/10.1103/PhysRevLett.91.157406 http://www.ncbi.nlm.nih.gov/pubmed/14611497

C. Rostb, S.F. Kargb, and M.Muccini, Synth. Metals 146, 329 (2004). http://dx.doi.org/10.1016/j.synthmet.2004.08.028

J. Reynaert, D. Cheyns, D.Janssen et al., J. Appl. Phys. 97, 114501 (2005). http://dx.doi.org/10.1063/1.1913793

T. Takahashi, T. Takenobu, J. Takeya et al., Adv. Funct. Mater. 17, 1623 (2007). http://dx.doi.org/10.1002/adfm.200700046

Y. Ohshima, H. Satou, N. Hirako et al., Jpn. J. Appl. Phys. 50, 04DK14 (2011). http://dx.doi.org/10.7567/JJAP.50.04DK14

C.-W. Chu, Y. Shao, V. Shrotriya et al., Appl. Phys. Lett. 86, 243506 (2005). http://dx.doi.org/10.1063/1.1946184

Y. Shao, S. Sista, C.-W. Chu et al., Appl. Phys. Lett. 90, 103501 (2007). http://dx.doi.org/10.1063/1.2709505

R.J. Tseng, R. Chan, V.C. Tung et al., Adv. Mater. 20, 435 (2008). http://dx.doi.org/10.1002/adma.200701374

R. Signerski. Mater. Sci. Poland 27, 763 (2009).

M.P. Gorishnyi, A.V. Verbitsky, A.V. Kovalchuk et al., Semicond. Phys. Quant. Electr. Optoelectr. 11, No. 3, 236 (2008).

R. Jankowiak, K.D. Rockwitz, and H. B¨assler, J. Phys. Chem. 87, 552 (1983). http://dx.doi.org/10.1021/j100227a008

D.D. Kolendritskii, M.V. Kurik, and Yu.P. Pirjatinskii, Phys. Status Solidi B 91, 741 (1979). http://dx.doi.org/10.1002/pssb.2220910243

W. Riemer and J.V. Hardy, Phys. Status Solidi A 14, 473 (1972). http://dx.doi.org/10.1002/pssa.2210140212

E.I. Silins, M.V. Kurik, and V. Capek, Electronic Processes in Organic Molecular Crystals. Localization and Polarization Phenomena (Zinatne, Riga, 1988) (in Russian). http://www.ncbi.nlm.nih.gov/pubmed/17171925

L. Viduta, T. Gavrilko, A. Marchenko et al., Ukr. J. Phys. 57, 260 (2012).

G. Herzberg, Molecular Spectra and Molecular Structure I: Spectra of Diatomic Molecules (Van Nostrand, New York, 1950).

E.F. McCoy and I.G. Ross, Austr. J. Chem. 15, 573 (1963). http://dx.doi.org/10.1071/CH9620573

M.P. Gorishnyi, M.V. Kurik, and L. Libera, Ukr. Fiz. Zh. 32, 1013 (1987).

J.M. Turlet and M.R. Philpott, J. Chem. Phys. 62, 4260 (1975). http://dx.doi.org/10.1063/1.430346

Yu.M. Lopatkin, Research of the Processes of Information Reflection in Linear Polyacetate Films, Ph.D. thesis (Kyiv, 1982) (in Russian).

M.P. Gorishnyi, Ukr. Fiz. Zh. 52, 1154 (2007).

Ya.I. Vertsymakha and Yu.M. Lopatkin, in Fundamentals of Optical Memory and Medium, No. 15 (1984), p. 49 (in Russian).

Published
2019-01-08
How to Cite
Gorishnyi, M., & Verbitsky, A. (2019). Structural, Optical, and Photovoltaic Properties of Tetracene Thin Films. Ukrainian Journal of Physics, 61(1), 50. https://doi.org/10.15407/ujpe61.01.0050
Section
Solid matter