Analytical Theory of Plasmon Effects in Rod-Like Metal Nanoparticles. The Equivalent-Spheroid Model


  • A.V. Korotun National University “Zaporizhzhia Polytechnic”, G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine
  • Ya.V. Karandas National University “Zaporizhzhia Polytechnic”
  • V.I. Reva National University “Zaporizhzhia Polytechnic”



polarizability tensor, absorption and scattering cross-sections, equivalent prolate spheroid, relaxation rate, plasmon resonance


In the framework of the model of equivalent prolate spheroid, analytical expressions for the polarizabilities of rod-like metal structures have been derived, which substantially simplified the calculation of their optical characteristics. The frequency dependences of the transverse and longitudinal components of the polarizability tensor, as well as the absorption and scattering cross-sections, are calculated for prolate spheroids, cylinders, and spherocylinders. The changes in the positions of the maxima of the imaginary part of the polarizability tensor components and the changes of the absorption and scattering cross-sections with variations in the size, shape, and material of nanoparticles are analyzed. It is found that the position of the transverse surface plasmon resonance (SPR) in rod-like nanoparticles of the considered shapes is practically insensitive to the changes of their semiaxes, whereas the increase of the aspect ratio leads to a “blue” shift of the longitudinal SPR. It is shown that the use of the model of effective prolate spheroid provides satisfactory agreement with experimental data obtained at the longitudinal SPR frequencies and does not require the application of complicated computational methods.


L. Novotny, B. Hecht. Principles of Nano-Optics, 2nd ed. (Cambridge University Press, 2012).

J.W. Haus. Introduction to nanophotonics. In: Fundamentals and Applications of Nanophotonics (Woodhead Publishing, 2016), p. XXXX.

J. Yan, X. Liu, C. Ma, Y. Huang, G. Yang. All-dielectric materials and related nanophotonic applications. Mater. Sci. Eng. R Rep. 141, 100563 (2020).

M. Sun, H. Dong, A.W. Dougherty, Q. Lu, D. Peng, W.T. Wong, B. Huang, L.D. Sun, C.H. Yan. Nanophotonic energy storage in upconversion nanoparticles. Nano Energy 56, 473 (2019).

J. Xavier, S. Vincent, F. Meder, F. Vollmer. Advances in optoplasmonic sensors - combining optical nano/microcavities and photonic crystals with plasmonic nanostructures and nanoparticles. Nanophotonics 7, 1 (2018).

H. Zhao, L.K. Chin, Y. Shi, P.Y. Liu, Y. Zhang, H. Cai, E.P.H. Yap, W. Ser, A.Q. Liu. Continuous optical sorting of nanoscale biomolecules in integrated microfluidic-nanophotonic chips. Sens. Actuat. B Chem. 331, 129428 (2021).

F. Pisanello. Implantable micro and nanophotonic devices: toward a new generation of neural interfaces. Microelectron. Eng. 215, 110979 (2019).

E. Luan, H. Shoman, D.M. Ratner, K.C. Cheung, L. Chrostowski. Silicon photonic biosensors using label-free detection. Sensors 18, 3519 (2018).

U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995).

S. Maier. Plasmonics: Fundamentals and Applications (Springer, 2007).

K.C. Grabar, R.G. Freeman, M.B. Hommer, M.J. Natan. Preparation and characterization of Au colloid monolayers. Anal. Chem. 67, 735 (1995).

J.C. Hulteen, R.P. Van Duyne. Nanosphere lithography: A materials general fabrication process for periodic particle array surfaces. J. Vac. Sci. Technol. A 13, 1553 (1995).

V. Bastys, I. Pastoriza-Santos, B. Rodriguez-Gonzalez, R. Vaisnoras, L.M. Liz-Marzan. Formation of silver nanoprisms with surface plasmons at communication wavelengths. Adv. Funct. Mater. 16, 766 (2006).

B. Nikoobakht, M.A. El-Sayed. Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method. Chem. Mater. 15, 1957 (2003).

Y.G. Sun, Y.N. Xia. Shape-controlled synthesis of gold and silver nanoparticles. Science 298, 2176 (2002).

A.O. Koval, A.V. Korotun, Yu.A. Kunytskyi, V.A. Tatarenko, I.M. Titov. Electrodynamics of Plasmon Effects in Nanomaterials (Naukova Dumka, 2021) (in Ukrainian).

K.L. Kelly, E. Coronado, L.L. Zhao, G.C. Schatz. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668 (2003).

N.K. Grady, N.J. Halas, P. Nordlander. Influence of dielectric function properties on the optical response of plasmon resonant metallic nanoparticles. Chem. Phys. Lett. 399, 167 (2004).

N.I. Grigorchuk. Plasmon resonant light scattering on spheroidal metallic nanoparticle embedded in a dielectric matrix. Europhys. Lett. 97, 45001 (2012).

P.M. Tomchuk. Dependence of light scattering crosssection by metal nanoparticles on their shape. Ukr. J. Phys. 57, 553 (2012). doi???????

A.V. Korotun, A.A. Koval', I.N. Titov. Optical absorption of a composite based on bilayer metal-dielectric spherical nanoparticles. J. Appl. Spectrosc. 87, 240 (2020).

A.V. Korotun, N.I. Pavlyshche. Cross sections for absorption and scattering of electromagnetic radiation by ensembles of metal nanoparticles of different shapes. Phys. Met. Metallogr. 122, 941 (2021).

C.F. Landes, S. Link, M.B. Mohamed, B. Nikoobakht, M.A. El-Sayed. Some properties of spherical and rodshaped semiconductor and metal nanocrystals. Pure Appl. Chem. 74, 1675 (2002).

A.V. Korotun, Ya.V. Karandas, V.I. Reva, I.M. Titov. Polarizability of two-layer metal-oxide nanowires. Ukr. J. Phys. 66, 906 (2021).

J.M. McLellan, Zh.-Y. Li, A.R. Siekkinen, Y. Xia. The SERS activity of a supported Ag nanocube strongly depends on its orientation relative to laser polarization. Nano Lett. 7, 1013 (2007).

A.X. Wang, X. Kong. Review of recent progress of plasmonic materials and nano-structures for surface-enhanced raman scattering. Materials 8, 3024 (2015).

E.S. Kolosovas-Machuca, A. Cuadrado, H.J. Ojeda-Galvan, L.C. Ortiz-Dosal, A.C. Hernandez-Arteaga, M.d.C. Rodriguez-Aranda, H.R. Navarro-Contreras, J. Alda, F.J. Gonzalez. Detection of histamine dihydrochloride at low concentrations using Raman spectroscopy enhanced by gold nanostars colloids. Nanomaterials 9, 211 (2019).

A. Brioude, X.C. Jiang, M.P. Pileni. Optical properties of gold nanorods: DDA simulations supported by experiments. J. Phys. Chem. B 109, 13138 (2005).

H. Chen, L. Shao, Q. Li, J. Wang. Gold nanorods and their plasmonic properties. Chem. Soc. Rev. 42, 2679 (2013).

S.W. Prescott, P. Mulvaney. Gold nanorod extinction spectra. J. Appl. Phys. 99, 123504 (2006).

C.L. Nehl, J.H. Hafner. Shape-dependent plasmon resonances of gold nanoparticles. J. Mater. Chem. 18, 2415 (2008).

V. Myroshnychenko, J. Rodriguez-Fernandez, I. PastorizaSantos, A.M. Funston, C. Novo, P. Mulvaney, L.M. LizMarzan, F.J. Garcia de Abajo. Modelling the optical response of gold nanoparticles. Chem. Soc. Rev. 37, 1792 (2008).

D. Constantin. Why the aspect ratio? Shape equivalence for the extinction spectra of gold nanoparticles. Eur. Phys. J. E 38, 116 (2015).

N.I. Grigorchuk, P.M. Tomchuk. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B 84, 085448 (2011).

N.I. Grigorchuk. Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. J. Opt. Soc. Am. B 29, 3404 (2012).



How to Cite

Korotun, A., Karandas, Y., & Reva, V. (2023). Analytical Theory of Plasmon Effects in Rod-Like Metal Nanoparticles. The Equivalent-Spheroid Model. Ukrainian Journal of Physics, 67(12), 849.



Surface physics