Plasmonic Phenomena in Biconical and Bipyramidal Metal Nanoparticles

Authors

  • A.V. Korotun National University “Zaporizhzhya Polytechnic”, G.V. Kurdyumov Institute for Metal Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe68.10.695

Keywords:

metal nanoparticle, bicone, bipyramid, plasmon resonance, polarizability, equivalent spheroid, aspect ratio

Abstract

The optical characteristics of metal nanoparticles with biconical and bipyramidal shapes have been studied in the framework of the equivalent spheroid approach. The frequency dependences of the diagonal components of the polarizability tensor, the absorption and scattering crosssections, and the frequencies of the longitudinal and transverse surface plasmon resonances are calculated for the particles with the indicated shapes. It is found that the position of the surface plasmon resonance significantly depends on the aspect ratio, if plasmon oscillations occur along the larger nanoparticle size, and it does not depend on the aspect ratio for plasmon oscillations along the smaller size. It is shown that the position and height of the maxima of the absorption cross-section depend not only on the aspect ratio, but also on the particle crosssection shape (a circle or a pentagon). In turn, a change in the nanoparticle material only shifts the spectrum curves, preserving the relative positions and magnitudes of the maxima of the absorption cross-sections.

References

U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995) [ISBN: 978-3-662-09109-8].

https://doi.org/10.1007/978-3-662-09109-8

F. Vall'ee. In: Nanomaterials and Nanochemistry. Edited by C. Br'echignac, P. Houdy, M. Lahmani (Springer, 2007) [ISBN: 978-3-540-72992-1].

K.A. Willets, R.P. Van Duyne. Localized surface plasmon resonance spectroscopy and sensing. Annu. Rev. Phys. Chem. 58, 267 (2007).

https://doi.org/10.1146/annurev.physchem.58.032806.104607

S.A. Maier. Plasmonics: Fundamentals and Applications (Springer, 2007) [ISBN: 978-0-387-37825-1].

https://doi.org/10.1007/0-387-37825-1

M.L. Dmytruk, S.Z. Malynych. Surface plasmon resonances and their manifestation in the optical properties of noble metal nanostructures. Ukr. Fiz. Zh. Ogl. 9, 3 (2014) [in Ukrainian].

D.J. De Aberasturi, A.B. Serrano-Montes, L.M. LizMarz'an. Modern applications of plasmonic nanoparticles: From energy to health. Adv. Opt. Mater. 3, 602 (2015).

https://doi.org/10.1002/adom.201500053

Handbook of Surface Plasmon Resonance. Edited by R.B.M. Schasfoort (RSC Publishing, 2017) [ISBN: 978-1-78262-730-2].

A.O. Koval, A.V. Korotun, Yu.A. Kunytskyi, V.A. Tatarenko, I.M. Titov. Electrodynamics of Plasmonic Effects in Nanomaterials (Naukova Dumka, 2021) [in Ukrainian] [ISBN: 978-966-00-1761-0].

N.I. Grigorchuk, P.M. Tomchuk. Cross-sections of electric and magnetic light absorption by spherical metallic nanoparticles. The exact kinetic solution. Ukr. J. Phys. 51, 921 (2006).

L.M. Liz-Marzan. Tailoring surface plasmons through the morphology and assembly of metal nanoparticles. Langmuir 22, 32 (2006).

https://doi.org/10.1021/la0513353

C.J. Murphy, N.R. Jana. Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80 (2002).

https://doi.org/10.1002/1521-4095(20020104)14:1<80::AID-ADMA80>3.0.CO;2-#

X.C. Jiang, M.P. Pileni. Gold nanorods: influence of various parameters as seeds, solvent, surfactant on shape control. Colloid. Surf. A 295, 228 (2007).

https://doi.org/10.1016/j.colsurfa.2006.09.003

M. Liu, P.J. Guyot-Sionnest. Mechanism of silver(i) - Assisted growth of gold nanorods and bipyramids. J. Phys. Chem. B 109, 22192 (2005).

https://doi.org/10.1021/jp054808n

L.J. Sherry, S.H. Chang, G.C. Schatz, R.P. Van Duyne, B.J. Wiley, B.J. Xia. Localized surface plasmon resonance spectroscopy of single silver nanocubes. Nano Lett. 5, 2034 (2005).

https://doi.org/10.1021/nl0515753

J. Rodriguez-Fernandez, C. Novo, V. Myroshnychenko, A.M. Funston, A. S'anchez-Iglesias, I. Pastoriza-Santos, J. P'erez-Juste, F. Javier Garcia de Abajo, L.M. LizMarz'an, P. Mulvaney. Spectroscopy, imaging, and modeling of individual gold decahedra. J. Phys. Chem. C 113, 18623 (2009).

https://doi.org/10.1021/jp907646d

C.L. Nehl, H. Liao, J.H. Hafner. Optical properties of starshaped gold nanoparticles. Nano Lett. 6, 683 (2006).

https://doi.org/10.1021/nl052409y

S. Xu, L. Jiang, Y. Nie, J. Wang, H. Li, Y. Liu, W. Wang, G. Xu, X. Luo. Gold nanobipyramids as dual-functional substrates for in situ "Turn on" analyzing intracellular telomerase activity based on target-triggered plasmonenhanced fluorescence. ACS Appl. Mater. Inter. 10, 26851 (2018).

https://doi.org/10.1021/acsami.8b05447

F. Zhao, X. Wang, Y. Zhang, X. Lu, H. Xie, B. Xu, W. Ye, W. Ni. In situ monitoring of silver adsorption on assembled gold nanorods by surface-enhanced Raman scattering. Nanotechnology 31, 295601 (2020).

https://doi.org/10.1088/1361-6528/ab8400

Q. Li, X. Zhuo, S. Li, Q. Ruan, Q.-H. Xu, J. Wang. Production of monodisperse gold nanobipyramids with number percentages approaching 100% and evaluation of their plasmonic properties. Adv. Opt. Mater. 3, 801 (2015).

https://doi.org/10.1002/adom.201400505

T.H. Chow, N. Li, X. Bai, X. Zhuo, L. Shao, J. Wang. Gold nanobipyramids: an emerging and versatile type of plasmonic nanoparticles. Acc. Chem. Res. 52, 2136 (2019).

https://doi.org/10.1021/acs.accounts.9b00230

D. Chateau, A. Liotta, F. Vadcard, J.R. Navarro, F. Chaput, J. Lerme, F. Lerouge, S. Parola. From gold nanobipyramids to nanojavelins for a precise tuning of the plasmon resonance to the infrared wavelengths: experimental and theoretical aspects. Nanoscale 7, 1934 (2015).

https://doi.org/10.1039/C4NR06323F

A. S'anchez-Iglesias, N. Winckelmans, T. Altantzis, S. Bals, M. Grzelczak, L.M. Liz-Marz'an. High-yield seeded growth of monodisperse pentatwinned gold nanoparticles through thermally induced seed twinning. J. Am. Chem. Soc. 139, 107 (2017).

https://doi.org/10.1021/jacs.6b12143

S. Nafisah, M.Morsin, N.A. Jumadi, N. Nayan, N.S.M. Shah, N.L. Razali, N.Z. Anrnisa. Improved sensitivity and selectivity of direct localized surface plasmon resonance sensor using gold nanobipyramids for glyphosate detection. IEEE Sens. J. 20, 2378 (2019).

https://doi.org/10.1109/JSEN.2019.2953928

J.R. Mejia-Salazar, O.N. Oliveira Jr. Plasmonic biosensing. Chem. Rev. 118, 10617 (2018).

https://doi.org/10.1021/acs.chemrev.8b00359

E. Kim, M.D. Baaske, I. Schuldes, P.S. Wilsch, F. Vollmer. Label-free optical detection of single enzyme-reactant reactions and associated conformational changes. Sci. Adv. 3, e1603044 (2017).

https://doi.org/10.1126/sciadv.1603044

Y. Kang, H.-X. Gu, X. Zhang. A self-referenced method for determination of patulin by surface-enhanced Raman scattering using gold nanobipyramids as the substrate. Anal. Methods 11, 5142 (2019).

https://doi.org/10.1039/C9AY01366K

Y. Lin, P. Kannan, Y. Zeng, B. Qiu, L. Guo, Z. Lin. Enzyme-free multicolor biosensor based on Cu2+-modified carbon nitride nanosheets and gold nanobipyramids for sensitive detection of neuron specific enolase. Sensor. Actuat. B Chem. 283, 138 (2019).

https://doi.org/10.1016/j.snb.2018.12.007

H. Mei, X. Wang, T. Zeng, L. Huang, Q. Wang, D. Ru, T. Huang, F. Tian, H. Wu, J. Gao. A nanocomposite consisting of gold nanobipyramids and multiwalled carbon nanotubes for amperometric nonenzymatic sensing of glucose and hydrogen peroxide. Microchim. Acta 186, 235 (2019).

https://doi.org/10.1007/s00604-019-3272-5

S. Xu, L. Jiang, Y. Liu, P. Liu, W. Wang, X. Luo. A morphology-based ultrasensitive multicolor colorimetric assay for detection of blood glucose by enzymatic etching of plasmonic gold nanobipyramids. Anal. Chim. Acta 1071, 53 (2019).

https://doi.org/10.1016/j.aca.2019.04.053

X.L. Zhuo, X.Z. Zhu, Q. Li, Z. Yang, J.F. Wang. Gold nanobipyramid-directed growth of Length-Variable Silver Nanorods with multipolar plasmon resonances. ACS Nano 9, 7523 (2015).

https://doi.org/10.1021/acsnano.5b02622

J. Feng, L. Chen, Y. Xia, J. Xing, Z. Li, Q. Qian, Y. Wang, A. Wu, L. Zeng, Y. Zhou. Bioconjugation of gold nanobipyramids for SERS detection and targeted photothermal therapy in breast Cancer. ACS Biomater. Sci. Eng. 3, 608 (2017).

https://doi.org/10.1021/acsbiomaterials.7b00021

Z. Chu, H. Zhang, Y. Wu, C. Zhang, J. Liu, J. Yang. Passively Q-switched laser based on gold nanobipyramids as saturable absorbers in the 1.3 μm region. Opt. Commun. 406, 209 (2018).

https://doi.org/10.1016/j.optcom.2017.02.025

A.V. Korotun, Y.V. Karandas, V.I. Reva. Analytical theory of plasmon effects in rod-like metal nanoparticles. The equivalent-spheroid model Ukr. J. Phys. 67, 849 (2022).

https://doi.org/10.15407/ujpe67.12.849

A.V. Korotun, N.I. Pavlyshche. Optical absorption of a composite with randomly distributed metallic inclusions of various shapes. Funct. Mater. 29, 567 (2022).

https://doi.org/10.15407/fm29.04.567

A.V. Korotun, Ya.V. Karandas. Surface plasmons in a nanotube with a finite-thickness wall. Phys. Metal. Metallogr. 123, 7 (2022).

https://doi.org/10.1134/S0031918X22010070

Published

2023-11-29

How to Cite

Korotun, A. (2023). Plasmonic Phenomena in Biconical and Bipyramidal Metal Nanoparticles. Ukrainian Journal of Physics, 68(10), 695. https://doi.org/10.15407/ujpe68.10.695

Issue

Section

Surface physics