Optical Parameters of Bimetallic Nanospheres


  • A.V. Korotun Zaporizhzhya National Technical University
  • A.O. Koval Zaporizhzhya National Technical University
  • V.V. Pogosov Zaporizhzhya National Technical University




bimetallic nanoparticle, dipole polarizability, dielectric function, surface plasmon, field enhancement factor


A formula for the relaxation time of electrons at the surface of a sphere consisting of a metal core and a metal shell (core-shell) has been derived and the frequency dependences of the electric and magnetic components of the sphere polarizability have been analyzed. The sphere polarization maxima correspond to the plasmon resonances of the core and the shell. Calculations are carried out for bimetallic Ag–Au, Au–Ag, and Ag–Al nanoparticles embedded in Teflon. A possibility to control the optical characteristics of bimetallic nanoparticles by changing their morphology is demonstrated. The extinction and scattering cross-sections and the field enhancement factor in the nanoparticle vicinity are calculated in a wide spectral interval and for various core-to-shell size ratios. The temperature of a photothermally heated bimetallic nanosphere used for the therapy of malignant tumors is evaluated.

Author Biography

A.O. Koval, Zaporizhzhya National Technical University

postgraduate student


S.A. Maier. Plasmonics: Fundamentals and Applications (Springer Science & Business Media, 2007).


M. Hu, J. Chen, Z.Y. Li, L. Au, G.V. Hartland, X. Li, Y. Xia. Gold nanostructures: engineering their plasmonic

properties for biomedical applications. Chem. Soc. Rev. 35, 1084 (2006).


E.M. Larsson, C. Langhammer, I. Zori'c, B. Kasemo. Nanoplasmonic probes of catalytic reactions. Science 326, 1091 (2009).


H.A. Atwater, A. Polman. Plasmonics for improved photovoltaic devices. Nat. Mater. 9, 205 (2010).


N.L. Dmitruk, S.Z. Malinich. Surface plasmon resonances and their manifestation in the optical properties of nanostructures of noble metals. Ukr. Fiz. Zh. Ogl. 9, 3 (2014) (in Ukrainian).

D.J. De Aberasturi, A.B. Serrano-Montes, L.M. Liz-Marz'an. Modern applications of plasmonic nanoparticles: from

energy to health. Adv. Opt. Mater. 3, 602 (2015).

B. Spackov'a, P. Wrobel, M. Bockov'a, J. Homola. Optical biosensors based on plasmonic nanostructures: a review. Proc. IEEE 104, 2380 (2016).


V.I. Balykin, P.N. Melentiev. Optics and spectroscopy of a single plasmonic nanostructure. Usp. Fiz. Nauk 188, 143 (2018) (in Russian).


M.M. Miller, A.A. Lazarides. Sensitivity of metal nanoparticle surface plasmon resonance to the dielectric environment. J. Phys. Chem. B 109, 21556 (2005).


A.V. Korotun, A.A. Koval. Optical properties of spherical metal nanoparticles coated with an oxide layer. Opt. Spektrosk. 127 1032 (2019) (in Russian).


A.V. Korotun, A.O. Koval, A.A. Kryuchyn, V.M. Rubish, V.V. Petrov, I.M. Titov. Nanophotonic Technologies. Current State and Prospects (FOP Sabov A.M., 2019) (in Ukrainian) [ISBN: 978-966-02-9059-4].

U. Kreibig, M. Vollmer. Optical Properties of Metal Clusters (Springer, 1995).


R. Ruppin, H.Yato. Size and shape eff ects on the broadening of the plasma resonance absorption in metals. Phys. Status Solidi B 74, 647 (1976).


N.I. Grigorchuk, P.M. Tomchuk. Optical and transport properties of spheroidal metal nanoparticles with account for the surface effect. Phys. Rev. B 84, 085448 (2011).


G.N. Blackman III, D.A. Genov. Bounds on quantum confinement effects in metal nanoparticles. Phys. Rev. B 97,



V.P. Kurbatskii, V.V. Pogosov. Low-frequency optical absorption by small metal particles. Pis'ma Zh. Tekhn. Fiz.

, 84 (2000) (in Russian).

V.P. Kurbatskii, A.V. Korotun, V.V. Pogosov. On the influence of the electron spectrum quantization of small

metal particles on optical absorption in composites. Zh. Tekhn. Fiz. 82, 130 (2012) (in Russian).

K. Tanabe. Field enhancement around metal nanoparticles and nanoshells: A systematic investigation. J. Phys. Chem. C 112, 15721 (2008).


Yu.I. Petrov. Clusters and Small Particles (Nauka, 1986) (in Russian).

R. Sato, Ma. Ohnuma, K. Oyoshi, Y. Takeda. Experimental investigation of nonlinear optical properties of Ag

nanoparticles: Eff ects of size quantization. Phys. Rev. B 90, 125417 (2014).

K.N. Afanasev, I.A. Boginskaya, A.V. Dorofeenko, A.V. Gusev, K.A. Mailyan, A.V. Pebalk, V.N. Chvalun, S.A. Ozerin, M.V. Sedova, I.A. Rodionov, W.V. Pogosov, I.A. Ryzhikov. Poly(p-xylylene)silver nanocomposites: Optical, radiative, and structural properties. IEEE Trans. Nanotechnol. 16, 274 (2017).


M.M. Moskovits, I. Srnov'a-Sloufov'a, B. Vlckov'a. Bimetallic Ag-Au nanoparticles: Extracting meaningful optical

constants from the surface-plasmon extinction spectrum. J. Chem. Phys. 116, 10435 (2002).


V.I. Belotelov, G. Carotenuto, L. Nicolais, A. Longo, G.P. Pepe, P. Perlo, A.K. Zvezdin. Online monitoring of

alloyed bimetallic nanoparticle formation by optical spectroscopy. J. Appl. Phys. 99, 044304 (2006).


M. Saliminasab, F. Shirzaditabar, R. Moradian. Electromagnetic field amplifi cation in Al/Ag spherical nanostructures. Appl. Phys. A 124, 870 (2018).


N. Valizade-Shahmirzadi, T. Pakizeh. Optical characterization of broad plasmon resonances of Pd/Pt nanoparticles. Mater. Res. Express. 5, 04538 (2018).


S. Sompech, S. Thaomola, A. Chingsungnoen, T. Dasri. Theoretical calculation of optical absorption property of

Cu/Ag core-shell composite nanoparticle. Mater. Res. Express. 6, 026201 (2019). https://doi.org/10.1088/2053-1591/aaeb58

A.V. Skidanenko, L.A. Avakyan, E.A. Kozinkina, L.A. Bugaev. An effect of internal structure of bimetallic nanoparticles on the optical properties of the Au/Ag glass material. Fiz. Tverd. Tela 61, 115 (2019) (in Russian).

M. Chen, S. Tang, Z. Guo, X. Wang, S. Mo, X. Huang, N. Zheng. Core-shell Pd/Au nanoplates as theranostic agents for in-vivo photoacoustic imaging, CT imaging, and photothermal therapy. Adv. Mater. 26, 8210 (2014). https://doi.org/10.1002/adma.201404013

A.J. McGrath, Y.H. Chien, S. Cheong, D.A. Herman, J. Watt, A.M. Henning, R.D. Tilley. Gold over branched palladium nanostructures for photothermal cancer therapy. ACS Nano 9, 12283 (2015). https://doi.org/10.1021/acsnano.5b05563

G.P. Zograf, A.S. Timin, A.R. Muslimov, I.I. Shishkin, A. Nomin'e, J. Ghanbaja, P. Ghosh, Q. Li, Mikhail V. Zyuzin, S.V. Makarov. All-optical nanoscale heating and thermometry with resonant dielectric nanoparticles for controllable drug release in living cells. Laser Photon. Rev. 14, 1900082 (2020). https://doi.org/10.1002/lpor.201900082

H.C. van de Hulst. Light Scattering by Small Particles (Dover, 1981).

C.F. Bohren, D.R. Huff man. Absorption and Scattering of Light by Small Particles (Wiley, 2008) [ISBN:978-0-471-29340-8].

A.V. Babich, V.V. Pogosov. Eff ect of dielectric coating on the electron work function and the surface stress of a metal. Surf. Sci. 603, 2393 (2009). https://doi.org/10.1016/j.susc.2009.05.036

V.V. Pogosov. On some tenzoemission eff ects of the small metal particles. Solid State Commun. 81, 129 (1992). https://doi.org/10.1016/0038-1098(92)90586-X

N.W. Ashcroft, N.D. Mermin. Solid State Physics (Saunders College Publishing, 1976).

G. Baff ou, R. Quidant, F.J. Garcia de Abajo. Nanoscale control of optical heating in complex plasmonic systems. ACS Nano 4, 709 (2010). https://doi.org/10.1021/nn901144d



How to Cite

Korotun, A., Koval, A., & Pogosov, V. (2021). Optical Parameters of Bimetallic Nanospheres. Ukrainian Journal of Physics, 66(6), 518. https://doi.org/10.15407/ujpe66.6.518



Surface physics