Structural and Photoluminescence Properties of ZnO Nanowires

Authors

  • G.Yu. Rudko V. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • I.V. Dubrovin O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • A.I. Klimovskaya V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • E.G. Gule V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • P.M. Lytvyn V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • Yu.M. Lytvyn O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine
  • S.P. Turanska O. Chuiko Institute of Surface Chemistry, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.12.1239

Keywords:

-

Abstract

Arrays of ZnO nanowires are grown by the vapor-liquid-solid method on a silicon substrate. The results of XRD, SEM, and AFM studies show that the diameters of nanowires vary in the range (50–300) nm, and their length is up to 40 μm. The wires exhibit bright photoluminescence: the band corresponding to the near band edge region and one or two (depending on the growth conditions) defect-related bands. The intensity ratio of the bands reflects the non-stoichiometry of the material and can be controlled by the zinc evaporation temperature and the temperature in the growing zone.

References

Y.S. Chang and J.M. Ting, Thin. Solid. Films 398-399, 29 (2001).

https://doi.org/10.1016/S0040-6090(01)01299-8

M.H. Huang, Y. Wu, H. Feick et al., Adv. Mater. 13, 113 (2001).

https://doi.org/10.1002/1521-4095(200101)13:2<113::AID-ADMA113>3.0.CO;2-H

X.M. Sun, X. Chen, Z.X. Deng et al., Mater. Chem. Phys. 78, 99 (2002).

https://doi.org/10.1016/S0254-0584(02)00310-3

Y.W. Heo, D.P. Norton, L.C. Tien et al., Mater. Sci. Eng. R 47, 1 (2004).

X. Wang, J. Song, J. Liu et al., Science 316, 102 (2007).

https://doi.org/10.1126/science.1139366

S.C. Lyu, Y. Zhang and C.J. Lee, Chem. Mater. 15, 3294 (2003).

https://doi.org/10.1021/cm020465j

A. Umar, S.H. Kim, J.H. Kim et al., Mater. Lett. 61, 4954 (2007).

https://doi.org/10.1016/j.matlet.2007.03.079

H.C. Hsu and W.F. Hsieh, Sol. St. Commun. 131, 371 (2004).

https://doi.org/10.1016/j.ssc.2004.05.043

C.Y. Wu, H.C. Hsu, H.M. Cheng et al., J. Cryst. Growth 287, 189 (2006).

https://doi.org/10.1016/j.jcrysgro.2005.10.065

L.N. Protasova, E.V. Rebrov, K.L. Choy et al., Catal. Sci. Technol. 1, 768 (2011).

https://doi.org/10.1039/c1cy00074h

J.B. Baxter and E.S. Aydil, J. Electrochem. Soc. 156, H52 (2009).

https://doi.org/10.1149/1.3006390

A. Dev, S. Kar, and S. Chaudhuri, J. of Nanosci. and Nanotechn. 7, 2778 (2007).

https://doi.org/10.1166/jnn.2007.602

B. Wen, Y. Huang, and J.J. Boland, J. Phys. Chem. C 112, 106 (2008).

https://doi.org/10.1021/jp076789i

E. Comini, C. Baratto, G. Faglia et al., Progr. Mater. Sci. 54, 1 (2009).

https://doi.org/10.1016/j.pmatsci.2008.06.003

J. Zhang, Y. Yang, F. Jiang et al., Solid State Chem. 178, 2804 (2005).

https://doi.org/10.1016/j.jssc.2005.06.015

Y. Zhang, H. Jia, R. Wang et al., Appl. Phys. Lett. 83, 4631 (2003).

https://doi.org/10.1063/1.1630849

W. Sang, Y. Fang, J. Fan et al., J. Cryst. Growth 299, 272 (2007).

https://doi.org/10.1016/j.jcrysgro.2006.10.240

L. Yang, J. Yang, D. Wang et al., Physica E 40, 920 (2008).

https://doi.org/10.1016/j.physe.2007.11.025

International Tables of X-Ray Crystallography (Kynoch Press, Birmingham, 1974).

Y. Zhang, B. Lin, Z. Fu et al., Opt. Mater. 28, 1192 (2006).

https://doi.org/10.1016/j.optmat.2005.08.016

K. Vanheusden, W.L. Warren, C.H. Seager et al., J. Appl. Phys. 79, 7983 (1996).

https://doi.org/10.1063/1.362349

K. Vanheusden, C.H. Seager, W.L. Warren et al., Appl. Phys. Lett. 68, 403 (1996).

https://doi.org/10.1063/1.116699

S.C. Lyu, Y. Zhang, H. Ruh et al., Chem. Phys. Lett. 363, 134 (2002).

https://doi.org/10.1016/S0009-2614(02)01145-4

S.A. Studenikin, N. Golego, and M. Cociverab, J. Appl. Phys. 84, 2287 (1998).

https://doi.org/10.1063/1.368295

Downloads

Published

2012-12-15

How to Cite

Rudko, G., Dubrovin, I., Klimovskaya, A., Gule, E., Lytvyn, P., Lytvyn, Y., & Turanska, S. (2012). Structural and Photoluminescence Properties of ZnO Nanowires. Ukrainian Journal of Physics, 57(12), 1239. https://doi.org/10.15407/ujpe57.12.1239

Issue

Section

Nanosystems

Most read articles by the same author(s)