Structural and Morphological Properties of Nanometer Carbon Films Obtained by Electron Beam Sputtering of Graphite

Authors

DOI:

https://doi.org/10.15407/ujpe68.11.764

Keywords:

AFM, carbon amorphous films, electron sputtering, graphite-like films, Raman spectroscopy, XPS

Abstract

Nanometer-thick carbon films on metal (copper, steel) and silicon substrates are obtained by the electron sputtering of graphite. The substrate temperature was varied from 350 to 600 оС with an increment of 50 оС, and the sputtering time from 1 to 10 s. The produced carbon films are studied using Raman spectroscopy, X-ray photoelectron spectroscopy (XPS), atomic force microscopy, and electron paramagnetic resonance (EPR) spectroscopy. From the analysis of Raman spectra, it is found that, at the temperatures of metal substrates below 550 оС, the carbon films formed on them are amorphous and have a graphite-like structure at higher substrate temperatures. At the same time, the films formed on silicon substrates at temperatures below 600 оС are amorphous. The results obtained from the Raman spectra correlate with the XPS data. It is shown that both the temperature and the substrate material (metal or silicon) affect the film morphology. As the substrate temperature increases from 350 to 600 оС, the average size of surface irregularities increases for carbon films on both the metal and silicon substrates. The EPR studies show that the available structural film defects, which are responsible for the manifestation of the so-called defect bands (D and D′ ones) in the Raman spectra, are not paramagnetic.

References

J. Khan, S.A. Momin, M. Mariatti. A review on advanced carbon-based thermal interface materials for electronic devices. Carbon 168, 65 (2020).

https://doi.org/10.1016/j.carbon.2020.06.012

J. Vejpravov'a. Mixed sp2 − sp3 nanocarbon materials: A status quo review. Nanomaterials 11, 2469 (2021).

https://doi.org/10.3390/nano11102469

M. Rouhani, J. Hobley, F. Chau-Nan Hong, Ye.-R. Jeng. In-situ thermal stability analysis of amorphous Si-doped carbon films. Carbon 184, 772 (2021).

https://doi.org/10.1016/j.carbon.2021.08.075

L. Li, D. Zhang, J. Deng, Y. Gou, J. Fang, H. Cui, Y. Zhao, M. Cao. Carbon-based materials for fast charging lithiumion batteries. Carbon 183, 721 (2021).

https://doi.org/10.1016/j.carbon.2021.07.053

F. Yin, W. Yue, Y. Li, S. Gao, C. Zhang, H. Kan, H. Niu, W. Wang, Y. Guo. Carbon-based nanomaterials for the detection of volatile organic compounds: A review. Carbon 180, 274 (2021).

https://doi.org/10.1016/j.carbon.2021.04.080

V.S. Kiselov, V.O. Yukhymchuk, M.Ya. Valakh, M.P. Tryus, M.A. Skoryk, A.G. Rozhin, S.A. Kulinich, A.E. Belyaev. Biomorphous SiC ceramics prepared from cork oak as precursor. J. Phys. Chem. Solids 91, 145 (2016).

https://doi.org/10.1016/j.jpcs.2016.01.003

R. Kumar, S. Sahoo, E. Joanni, R.K. Singh, W.K. Tan, K.K. Kar, A. Matsuda. Recent progress on carbon-based composite materials for microwave electromagnetic interference shielding. Carbon 177, 304 (2021).

https://doi.org/10.1016/j.carbon.2021.02.091

J. Robertson. Amorphous carbon. Adv. Phys. 35, 317 (1986).

https://doi.org/10.1080/00018738600101911

M. Chhowalla, A.C. Ferrari, J. Robertson, G.A.J. Amaratunga. Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon studied by Raman spectroscopy. Appl. Phys. Lett. 76, 1419 (2000).

https://doi.org/10.1063/1.126050

A.C. Ferrari, J. Robertson. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 64, 075414 (2001).

https://doi.org/10.1103/PhysRevB.64.075414

Z. Seker, H. Ozdamar, M. Esen, R. Esen, H. Kavak. The effect of nitrogen incorporation in DLC films deposited by ECR Microwave Plasma CVD. Appl. Surf. Sci. 314, 46 (2014).

https://doi.org/10.1016/j.apsusc.2014.06.137

N. Paik. Raman and XPS studies of DLC films prepared by a magnetron sputter-type negative ion source. Surf. Coat. Technol. 200, 2170 (2005).

https://doi.org/10.1016/j.surfcoat.2004.08.073

K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, L.V. Grigorieva, A.A. Firsov. Electric field effect in atomically thin carbon films. Science 306, 666 (2004).

https://doi.org/10.1126/science.1102896

Yu.A. Kurapov, L.A. Krushinskaya, V.V. Boretsky. Morphology of surface and fine structure of thick carbon films, produced by electron beam evaporations of carbon. Electrometall. Today 02, 53 (2017).

https://doi.org/10.15407/sem2017.02.08

J. Robertson. Diamond-like amorphous carbon. Mater. Sci. Eng. R 37, 129 (2002).

https://doi.org/10.1016/S0927-796X(02)00005-0

L. Liu, M. Qing,Y. Wang, S. Chen. Defects in graphene: Generation, healing, and their effects on the properties of graphene: A review. J. Mater. Sci. Technol. 31, 599 (2015).

https://doi.org/10.1016/j.jmst.2014.11.019

A.C. Ferrari, J. Robertson. Interpretation of Raman spectra of disordered and amorphous carbon. Phys.Rev. B 61, 14095 (2000).

https://doi.org/10.1103/PhysRevB.61.14095

Ѕ.A. Konchits, B.D. Shanina, S.V. Krasnovyd, V.O. Yukhymchuk, O.M. Hreshchuk, M.Ya. Valakh, M.A. Skoryk, S.A. Kulinich, A.E. Belyaev, D.A. Iarmolenko. Structure and electronic properties of biomorphic carbon matrices and SiC ceramics prepared on their basis. J. Appl. Phys. 124, 135703 (2018).

https://doi.org/10.1063/1.5042844

L.G. Cancado, K.Takai,T. Enoki, M. Endo, Y. Kim, H. Mizusaki, A. Jorio, L. Coelho. R. Paniago, M.A. Pimenta. General equation for the determination of the crystallite size L[a] of nanographite by Raman spectroscopy. Appl. Phys. Lett. 88, 163106 (2006).

https://doi.org/10.1063/1.2196057

J. Etula, N. Wester, S. Sainio, T. Laurila, J. Koskinen. Characterization and electrochemical properties of irondoped tetrahedral amorphous carbon (ta-C) thin films. RSC Adv. 8, 26356 (2018).

https://doi.org/10.1039/C8RA04719G

M. Rouhani, J. Hobley, F. Chau-Nan Hong, Yeau-Ren Jeng. In-situ thermal stability analysis of amorphous Sidoped carbon films. Carbon 184, 772 (2021).

https://doi.org/10.1016/j.carbon.2021.08.075

J. Vegh. The Shirley-equivalent electron inelastic scattering cross-section function. Surface Science 563, 183 (2004).

https://doi.org/10.1016/j.susc.2004.06.154

Published

2023-12-18

How to Cite

Yukhymchuk, V., Dzhagan, V., Isaieva, O., Lytvyn, P., Korchovyi, A., Sabov, T., Lozinskii, V., Yefanov, V., Osokin, V., & Kurapov, Y. (2023). Structural and Morphological Properties of Nanometer Carbon Films Obtained by Electron Beam Sputtering of Graphite. Ukrainian Journal of Physics, 68(11), 764. https://doi.org/10.15407/ujpe68.11.764

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)