Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation

Authors

  • E. Heidari Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran (Shahid Motahary Str., Islamic Azad Univ., Bushehr, Iran)

DOI:

https://doi.org/10.15407/ujpe62.12.1017

Keywords:

plasma channels, solitons, relativistic plasma, Cherenkov radiation

Abstract

The propagation of an intense laser beam in a preformed plasma channel is studied. Considering a propagating Gaussian laser pulse in a relativistic plasma channel which has a parabolic density profile, the evolution equation of the laser spot size is derived analytically and solved numerically. The governing equation includes the effects of relativistic corrections to the ponderomotive self-channeling, preformed channel focusing, and self-focusing. In order to investigate the conditions for the existence of electromagnetic solitary waves, the solutions of the evolution equation for the laser spot size are discussed in terms of a relativistic effective potential. Some solitary wave solutions are illustrated numerically. The relativistic corrections to the dispersion relation of Cherenkov emission in dusty plasma is presented briefly. In the low-velocity limit, all the expressions in the present study are reduced to their associated counterparts in the nonrelativistic regime, as should be.

References

<ol>
<li>D. Farina, S.V. Bulanov. Slow electromagnetic solitons in electron-ion plasmas. Plasma Phys. Rep. 27, 641 (2001).
<a href="https://doi.org/10.1134/1.1390536">https://doi.org/10.1134/1.1390536</a>
</li>
<li>B. Shen, M.Y. Yu. High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004 (2002).
<a href="https://doi.org/10.1103/PhysRevLett.89.275004">https://doi.org/10.1103/PhysRevLett.89.275004</a>
</li>
<li>S.V. Bulanov, T. Esirkepov, T. Tajima. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001 (2003).
<a href="https://doi.org/10.1103/PhysRevLett.91.085001">https://doi.org/10.1103/PhysRevLett.91.085001</a>
</li>
<li>E. Heidari, M. Aslaninejad. Relativistic electron-cyclotron waves in a hot plasma channel with a parabolic density profile. Acta Phys. Polon. A 123, 285 (2013).
<a href="https://doi.org/10.12693/APhysPolA.123.285">https://doi.org/10.12693/APhysPolA.123.285</a>
</li>
<li>R. Malik, K.H. Malik. Compressive solitons in a moving ep plasma under the effect of dust grains and an external magnetic field. J. Theor. Appl. Phys. 7, 65 (2013).
<a href="https://doi.org/10.1186/2251-7235-7-65">https://doi.org/10.1186/2251-7235-7-65</a>
</li>
<li>V.V. Kulish et al. Nonlinear theory of plasma-beam superheterodyne free electron laser of dopplertron type with nonaxial injection of electron beam. Acta Phys. Polon. A 126, 1263 (2014).
<a href="https://doi.org/10.12693/APhysPolA.126.1263">https://doi.org/10.12693/APhysPolA.126.1263</a>
</li>
<li>M. Mahmoodi-Drian. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma. J. Theor. Appl. Phys. 10, 33 (2016).
<a href="https://doi.org/10.1007/s40094-015-0198-0">https://doi.org/10.1007/s40094-015-0198-0</a>
</li>
<li>E. Heidari, M. Aslaninejad, H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma. Plasma Phys. Control. Fusion 52, 075010 (2010).
<a href="https://doi.org/10.1088/0741-3335/52/7/075010">https://doi.org/10.1088/0741-3335/52/7/075010</a>
</li>
<li>R.A. Cairns, A. Reitsma, R. Bingham. Envelope equations and conservation laws describing wakefield generation and electron acceleration. Phys. Plasmas 11, 766 (2004).
<a href="https://doi.org/10.1063/1.1638753">https://doi.org/10.1063/1.1638753</a>
</li>
<li> R. Bingham. Accelerator physics: In the wake of success. Nature 424, 258 (2003).
<a href="https://doi.org/10.1038/424258a">https://doi.org/10.1038/424258a</a>
</li>
<li> B. Hafizi, A. Ting, P. Sprangle, R.F. Hubbard. Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 4120 (2000).
<a href="https://doi.org/10.1103/PhysRevE.62.4120">https://doi.org/10.1103/PhysRevE.62.4120</a>
</li>
<li> C.E. Max, J. Arons, A.B. Langdon. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209 (1974).
<a href="https://doi.org/10.1103/PhysRevLett.33.209">https://doi.org/10.1103/PhysRevLett.33.209</a>
</li>
<li> P.W. Wachulak, A. Bartnik, H. Fiedorowicz, J. Kostecki. Nanometer-scale incoherent imaging using laser-plasma EUV source. Acta Phys. Polon. A 121, 450 (2012).
<a href="https://doi.org/10.12693/APhysPolA.121.450">https://doi.org/10.12693/APhysPolA.121.450</a>
</li>
<li> T. Mohsenpour. Nonlinear study of an ion-channel guiding free-electron laser. J. Theor. Appl. Phys. 8, 128 (2014).
<a href="https://doi.org/10.1007/s40094-014-0128-6">https://doi.org/10.1007/s40094-014-0128-6</a>
</li>
<li> E. Heidari, M. Aslaninejad, H. Eshraghi, L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas 21, 032305 (2014).
<a href="https://doi.org/10.1063/1.4868729">https://doi.org/10.1063/1.4868729</a>
</li>
<li> S. Zhang, B.S. Xie, X.R. Hong, H.C. Wu, X.Y. Zhao. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum well. Phys. Plasmas 18, 033104-1 (2011).
<a href="https://doi.org/10.1063/1.3561802">https://doi.org/10.1063/1.3561802</a>
</li>
<li> B. Shen, M.Y. Yu, X. Wang. Photon-photon scattering in a plasma channel. Phys. Plasmas 10, 4570 (2003).
<a href="https://doi.org/10.1063/1.1618772">https://doi.org/10.1063/1.1618772</a>
</li>
<li> M.Y. Yu, P.K. Shukla, N.L. Tsintsadze. Nonlinear interaction of a powerful laser with an electron plasma. Phys. Fluids 25, 1049 (1982).
<a href="https://doi.org/10.1063/1.863836">https://doi.org/10.1063/1.863836</a>
</li>
<li> B. Eliasson, P.K. Shukla. Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. JETP Lett. 83, 447 (2006).
<a href="https://doi.org/10.1134/S0021364006100055">https://doi.org/10.1134/S0021364006100055</a>
</li>
<li> D. Alontseva, A. Krasavin, A. Pogrebnjak, A. Russakova. The comparative study of the structure and phase composition of Ni-based coatings modified by plasma jet or electron beam. Acta Phys. Polon. A 123, 867 (2013).
<a href="https://doi.org/10.12693/APhysPolA.123.867">https://doi.org/10.12693/APhysPolA.123.867</a>
</li>
<li> M.N. Shaikh, B. Zamir, R. Ali. TE surface waves in a plasma sandwich structure. Acta Phys. Polon. A 127, 1625 (2015).
<a href="https://doi.org/10.12693/APhysPolA.127.1625">https://doi.org/10.12693/APhysPolA.127.1625</a>
</li>
<li> W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).
<a href="https://doi.org/10.1103/PhysRevLett.96.165002">https://doi.org/10.1103/PhysRevLett.96.165002</a>
</li>
<li> A.A. El-Bendary, W.F. El-Taibany, Kh.H. El-Shorbagy. Cherenkov radiation waves in inhomogeneous dusty plasma. Phys. Wave Phenom. 21, 226 (2013).
<a href="https://doi.org/10.3103/S1541308X13030096">https://doi.org/10.3103/S1541308X13030096</a></li>
</ol>

Downloads

Published

2018-09-03

How to Cite

Heidari, E. (2018). Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation. Ukrainian Journal of Physics, 62(12), 1017. https://doi.org/10.15407/ujpe62.12.1017

Issue

Section

Plasmas and gases