Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation

  • E. Heidari Department of Sciences, Bushehr Branch, Islamic Azad University, Bushehr, Iran (Shahid Motahary Str., Islamic Azad Univ., Bushehr, Iran)
Keywords: plasma channels, solitons, relativistic plasma, Cherenkov radiation

Abstract

The propagation of an intense laser beam in a preformed plasma channel is studied. Considering a propagating Gaussian laser pulse in a relativistic plasma channel which has a parabolic density profile, the evolution equation of the laser spot size is derived analytically and solved numerically. The governing equation includes the effects of relativistic corrections to the ponderomotive self-channeling, preformed channel focusing, and self-focusing. In order to investigate the conditions for the existence of electromagnetic solitary waves, the solutions of the evolution equation for the laser spot size are discussed in terms of a relativistic effective potential. Some solitary wave solutions are illustrated numerically. The relativistic corrections to the dispersion relation of Cherenkov emission in dusty plasma is presented briefly. In the low-velocity limit, all the expressions in the present study are reduced to their associated counterparts in the nonrelativistic regime, as should be.

References


  1. D. Farina, S.V. Bulanov. Slow electromagnetic solitons in electron-ion plasmas. Plasma Phys. Rep. 27, 641 (2001).
    https://doi.org/10.1134/1.1390536

  2. B. Shen, M.Y. Yu. High-intensity laser-field amplification between two foils. Phys. Rev. Lett. 89, 275004 (2002).
    https://doi.org/10.1103/PhysRevLett.89.275004

  3. S.V. Bulanov, T. Esirkepov, T. Tajima. Light intensification towards the Schwinger limit. Phys. Rev. Lett. 91, 085001 (2003).
    https://doi.org/10.1103/PhysRevLett.91.085001

  4. E. Heidari, M. Aslaninejad. Relativistic electron-cyclotron waves in a hot plasma channel with a parabolic density profile. Acta Phys. Polon. A 123, 285 (2013).
    https://doi.org/10.12693/APhysPolA.123.285

  5. R. Malik, K.H. Malik. Compressive solitons in a moving ep plasma under the effect of dust grains and an external magnetic field. J. Theor. Appl. Phys. 7, 65 (2013).
    https://doi.org/10.1186/2251-7235-7-65

  6. V.V. Kulish et al. Nonlinear theory of plasma-beam superheterodyne free electron laser of dopplertron type with nonaxial injection of electron beam. Acta Phys. Polon. A 126, 1263 (2014).
    https://doi.org/10.12693/APhysPolA.126.1263

  7. M. Mahmoodi-Drian. The effect of external magnetic field on the density distributions and electromagnetic fields in the interaction of high-intensity short laser pulse with collisionless underdense plasma. J. Theor. Appl. Phys. 10, 33 (2016).
    https://doi.org/10.1007/s40094-015-0198-0

  8. E. Heidari, M. Aslaninejad, H. Eshraghi. Electron trapping in the electrosound solitary wave for propagation of high intensity laser in a relativistic plasma. Plasma Phys. Control. Fusion 52, 075010 (2010).
    https://doi.org/10.1088/0741-3335/52/7/075010

  9. R.A. Cairns, A. Reitsma, R. Bingham. Envelope equations and conservation laws describing wakefield generation and electron acceleration. Phys. Plasmas 11, 766 (2004).
    https://doi.org/10.1063/1.1638753

  10. R. Bingham. Accelerator physics: In the wake of success. Nature 424, 258 (2003).
    https://doi.org/10.1038/424258a

  11. B. Hafizi, A. Ting, P. Sprangle, R.F. Hubbard. Relativistic focusing and ponderomotive channeling of intense laser beams. Phys. Rev. E 62, 4120 (2000).
    https://doi.org/10.1103/PhysRevE.62.4120

  12. C.E. Max, J. Arons, A.B. Langdon. Self-modulation and self-focusing of electromagnetic waves in plasmas. Phys. Rev. Lett. 33, 209 (1974).
    https://doi.org/10.1103/PhysRevLett.33.209

  13. P.W. Wachulak, A. Bartnik, H. Fiedorowicz, J. Kostecki. Nanometer-scale incoherent imaging using laser-plasma EUV source. Acta Phys. Polon. A 121, 450 (2012).
    https://doi.org/10.12693/APhysPolA.121.450

  14. T. Mohsenpour. Nonlinear study of an ion-channel guiding free-electron laser. J. Theor. Appl. Phys. 8, 128 (2014).
    https://doi.org/10.1007/s40094-014-0128-6

  15. E. Heidari, M. Aslaninejad, H. Eshraghi, L. Rajaee. Standing electromagnetic solitons in hot ultra-relativistic electron-positron plasmas. Phys. Plasmas 21, 032305 (2014).
    https://doi.org/10.1063/1.4868729

  16. S. Zhang, B.S. Xie, X.R. Hong, H.C. Wu, X.Y. Zhao. Approaches for high internal quantum efficiency green InGaN light-emitting diodes with large overlap quantum well. Phys. Plasmas 18, 033104-1 (2011).
    https://doi.org/10.1063/1.3561802

  17. B. Shen, M.Y. Yu, X. Wang. Photon-photon scattering in a plasma channel. Phys. Plasmas 10, 4570 (2003).
    https://doi.org/10.1063/1.1618772

  18. M.Y. Yu, P.K. Shukla, N.L. Tsintsadze. Nonlinear interaction of a powerful laser with an electron plasma. Phys. Fluids 25, 1049 (1982).
    https://doi.org/10.1063/1.863836

  19. B. Eliasson, P.K. Shukla. Formation and dynamics of relativistic electromagnetic solitons in plasmas containing high-and low-energy electron components. JETP Lett. 83, 447 (2006).
    https://doi.org/10.1134/S0021364006100055

  20. D. Alontseva, A. Krasavin, A. Pogrebnjak, A. Russakova. The comparative study of the structure and phase composition of Ni-based coatings modified by plasma jet or electron beam. Acta Phys. Polon. A 123, 867 (2013).
    https://doi.org/10.12693/APhysPolA.123.867

  21. M.N. Shaikh, B. Zamir, R. Ali. TE surface waves in a plasma sandwich structure. Acta Phys. Polon. A 127, 1625 (2015).
    https://doi.org/10.12693/APhysPolA.127.1625

  22. W. Lu, C. Huang, M. Zhou, W.B. Mori, T. Katsouleas. Nonlinear theory for relativistic plasma wakefields in the blowout regime. Phys. Rev. Lett. 96, 165002 (2006).
    https://doi.org/10.1103/PhysRevLett.96.165002

  23. A.A. El-Bendary, W.F. El-Taibany, Kh.H. El-Shorbagy. Cherenkov radiation waves in inhomogeneous dusty plasma. Phys. Wave Phenom. 21, 226 (2013).
    https://doi.org/10.3103/S1541308X13030096

Published
2018-09-03
How to Cite
Heidari, E. (2018). Relativistic Laser-Plasma Interactions. Moving Solitary Waves in Plasma Channels and the Kinetic Dispersion Relation of Cherenkov Radiation. Ukrainian Journal of Physics, 62(12), 1017. https://doi.org/10.15407/ujpe62.12.1017
Section
Plasmas and gases