Pulses of the Excitonic Condensed Phase in Semiconductors with Double Quantum Well at Steady Pumping

Size Effects

Authors

  • V. V. Mykhaylovskyy Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine
  • V. I. Sugakov Institute for Nuclear Research, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe63.5.396

Abstract

The conditions, under which the generation and movement of solitons (regions of exciton condensed phases) occurs in double quantum wells of semiconductors under a stationary pumping and in the presence of an external driving force, are analyzed. It is shown that there is a minimal size of the system, in which a state with moving solitons can be created. The dependence of the minimum value of the driving force necessary for the generation of moving solitons on the size of the system is found.

References

<ol>
<li>L.V. Butov, A.C. Gossard, D.S. Chemla. Macroscopically ordered state in an exciton system. Nature 418, 751 (2002).
<a href="https://doi.org/10.1038/nature00943">https://doi.org/10.1038/nature00943</a>
</li>
<li>A.V. Gorbunov, V.B. Timofeev. Collective state in a Bose gas of interacting interwell excitons. JETP Lett. 83, 146 (2006).
<a href="https://doi.org/10.1134/S0021364006040047">https://doi.org/10.1134/S0021364006040047</a>
</li>
<li>L.S. Levitov, B.D. Smons, L.V. Butov. Pattern formation as a signature of quantum degeneracy in a cold exciton system. Phys. Rev. Lett. 94, 176404 (2005).
<a href="https://doi.org/10.1103/PhysRevLett.94.176404">https://doi.org/10.1103/PhysRevLett.94.176404</a>
</li>
<li>A.V. Paraskevov, T.V. Khabarova. On the microscopic theory of the exciton ring fragmentation. Phys. Lett. A 368, 151 (2007).
<a href="https://doi.org/10.1016/j.physleta.2007.04.001">https://doi.org/10.1016/j.physleta.2007.04.001</a>
</li>
<li>R.B. Saptsov. On the instability of a homogeneous state of a weakly interacting Bose gas under external cooling. JETP Lett. 86, 687 (2008).
<a href="https://doi.org/10.1134/S0021364007220158">https://doi.org/10.1134/S0021364007220158</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Pattern formation of indirect excitons in coupled quantum wells. J. Phys. Condens. Matter 18, 9659 (2006).
<a href="https://doi.org/10.1088/0953-8984/18/42/012">https://doi.org/10.1088/0953-8984/18/42/012</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Theoretical modeling of spatial- and temperature-dependent exciton energy in coupled quantum wells. Phys. Rev. B 80, 125317 (2010).
<a href="https://doi.org/10.1103/PhysRevB.80.125317">https://doi.org/10.1103/PhysRevB.80.125317</a>
</li>
<li>V.K. Mukhomorov. On the possibility of realizing a periodic low-density spatial distribution of excitons. Phys. Solid State 52, 241 (2010).
<a href="https://doi.org/10.1134/S1063783410020046">https://doi.org/10.1134/S1063783410020046</a>
</li>
<li>J. Wilkes, E.A. Muljarov, A.L. Ivanov. Drift-diffusion model of the fragmentation of the external ring structure in the photoluminescence pattern emitted by indirect excitons in coupled quantum wells. Phys. Rev. Lett. 109, 187402 (2012).
<a href="https://doi.org/10.1103/PhysRevLett.109.187402">https://doi.org/10.1103/PhysRevLett.109.187402</a>
</li>
<li> S.V. Andreev. Thermodynamic model of the macroscopically ordered exciton state. Phys. Rev. Lett. 110, 146401 (2013).
<a href="https://doi.org/10.1103/PhysRevLett.110.146401">https://doi.org/10.1103/PhysRevLett.110.146401</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Coulomb correlations and electron-hole liquid in double quantum wells. JETP Lett. 97, 726 (2013) .
<a href="https://doi.org/10.1134/S0021364013110027">https://doi.org/10.1134/S0021364013110027</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Quantum phase transition of electron-hole liquid in coupled quantum wells. Phys. Rev. B 94, 165304 (2016).
<a href="https://doi.org/10.1103/PhysRevB.94.165304">https://doi.org/10.1103/PhysRevB.94.165304</a>
</li>
<li> V.I. Sugakov. Islands of exciton condensed phases in a two-dimensional system, the distribution of their sizes and coherence in position. Solid State Commun. 134, 63, (2005).
<a href="https://doi.org/10.1016/j.ssc.2004.07.078">https://doi.org/10.1016/j.ssc.2004.07.078</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells: Temperature effects. Phys. Solid State 48, 1984 (2006).
<a href="https://doi.org/10.1134/S1063783406100283">https://doi.org/10.1134/S1063783406100283</a>
</li>
<li> M.Y. J. Tan, N.D. Drummond, R.J. Needs. Exciton and biexciton energies in bilayer systems. Phys. Rev. B 71, 033303 (2005).
<a href="https://doi.org/10.1103/PhysRevB.71.033303">https://doi.org/10.1103/PhysRevB.71.033303</a>
</li>
<li> Ch. Shindler, R. Zimmermann. Analysis of the exciton-exciton interaction in semiconductor quantum wells. Phys. Rev. B 78, 045313 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.045313">https://doi.org/10.1103/PhysRevB.78.045313</a>
</li>
<li> A.D. Meyertholen, M.M. Fogler. Biexcitons in two-dimensional systems with spatially separated electrons and holes. Phys. Rev. B 78, 235307 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.235307">https://doi.org/10.1103/PhysRevB.78.235307</a>
</li>
<li> Yu.E. Lozovik, O.I. Berman. Phase transitions in a system of two coupled quantum wells. JETP Lett. 64, 573 (1996).
<a href="https://doi.org/10.1134/1.567264">https://doi.org/10.1134/1.567264</a>
</li>
<li> A. A. Chernyuk, V. I. Sugakov. Ordered dissipative structures in exciton systems in semiconductor quantum wells. Phys. Rev. B 74, 085303 (2006).
<a href="https://doi.org/10.1103/PhysRevB.74.085303">https://doi.org/10.1103/PhysRevB.74.085303</a>
</li>
<li> M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertolen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard. Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102, 186803 (2009).
<a href="https://doi.org/10.1103/PhysRevLett.102.186803">https://doi.org/10.1103/PhysRevLett.102.186803</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov. Exciton phase transitions in semiconductor quantum wells with disc-shaped electrode. Solid State Commun. 149, 2185 (2009).
<a href="https://doi.org/10.1016/j.ssc.2009.09.015">https://doi.org/10.1016/j.ssc.2009.09.015</a>
</li>
<li> V.B. Timofeev, A.V. Gorbunov, D.A. Demin. Bose-Einstein condensation of dipolar excitons in lateral traps. Low Temp. Phys. 37, 179 (2011).
<a href="https://doi.org/10.1063/1.3570931">https://doi.org/10.1063/1.3570931</a>
</li>
<li> A.V. Gorbunov, V.B. Timofeev. Phase diagram of the Bose condensation of dipolar excitons in GaAs/AlGaAs quantum-well heterostructures. JETP Lett. 96, 143 (2012).
<a href="https://doi.org/10.1134/S0021364012140056">https://doi.org/10.1134/S0021364012140056</a>
</li>
<li> V.V. Tomylko, I.Yu. Goliney, A.A. Chernyuk, V.I. Sugakov. Exciton density pattern formation in laser irradiated quantum wells under electrodes of various shapes. Low Temp. Phys. 40, 975 (2014).
<a href="https://doi.org/10.1063/1.4892648">https://doi.org/10.1063/1.4892648</a>
</li>
<li> M. Remeika, A.T. Hammack, S.V. Poltavtsev, L.V. Butov et al. Pattern formation in the exciton inner ring. Phys. Rev. B 88, 125307 (2013).
<a href="https://doi.org/10.1103/PhysRevB.88.125307">https://doi.org/10.1103/PhysRevB.88.125307</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov, V.V. Tomylko. Model of fragmentation of the exciton inner ring in semiconductor quantum wells. Phys. Rev. B 90, 205308 (2014).
<a href="https://doi.org/10.1103/PhysRevB.90.205308">https://doi.org/10.1103/PhysRevB.90.205308</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells. Self-organization against Bose-condensation. Ukr. J. Phys. 56, 1124 (2011).
</li>
<li> V.I. Sugakov. Ordered structures of exciton condensed phases in the presence of an inhomogeneous potential. J. Phys. Condens. Matter 21, 275803 (2009).
<a href="https://doi.org/10.1088/0953-8984/21/27/275803">https://doi.org/10.1088/0953-8984/21/27/275803</a>
</li>
<li> O.I. Dmytruk, V.I. Sugakov. Amplification and passing through the barrier of the exciton condensed phase pulse in double quantum wells. Physica B 436, 80 (2014).
<a href="https://doi.org/10.1016/j.physb.2013.11.055">https://doi.org/10.1016/j.physb.2013.11.055</a>
</li>
<li> V. Mykhaylovskyy, V. Sugakov, I. Goliney. Excitation of pulses of excitonic condensed phase at steady pumping. J. Nanophotonics 10, 033504 (2016).
<a href="https://doi.org/10.1117/1.JNP.10.033504">https://doi.org/10.1117/1.JNP.10.033504</a>
</li>
<li> G. Nicolis, I. Prigogine. Self-Organization in Non-Equilibrium Systems (Wiley, 1977).
</li>
<li> B.S. Kerner, V.V. Osipov. Autosolitons. Sov. Phys. Usp. 32, 101 (1989).
<a href="https://doi.org/10.1070/PU1989v032n02ABEH002679">https://doi.org/10.1070/PU1989v032n02ABEH002679</a>
</li>

Downloads

Published

2018-07-03

How to Cite

Mykhaylovskyy, V. V., & Sugakov, V. I. (2018). Pulses of the Excitonic Condensed Phase in Semiconductors with Double Quantum Well at Steady Pumping: Size Effects. Ukrainian Journal of Physics, 63(5), 396. https://doi.org/10.15407/ujpe63.5.396

Issue

Section

Surface physics

Most read articles by the same author(s)