Pulses of the Excitonic Condensed Phase in Semiconductors with Double Quantum Well at Steady Pumping
Size Effects
DOI:
https://doi.org/10.15407/ujpe63.5.396Abstract
The conditions, under which the generation and movement of solitons (regions of exciton condensed phases) occurs in double quantum wells of semiconductors under a stationary pumping and in the presence of an external driving force, are analyzed. It is shown that there is a minimal size of the system, in which a state with moving solitons can be created. The dependence of the minimum value of the driving force necessary for the generation of moving solitons on the size of the system is found.
References
<li>L.V. Butov, A.C. Gossard, D.S. Chemla. Macroscopically ordered state in an exciton system. Nature 418, 751 (2002).
<a href="https://doi.org/10.1038/nature00943">https://doi.org/10.1038/nature00943</a>
</li>
<li>A.V. Gorbunov, V.B. Timofeev. Collective state in a Bose gas of interacting interwell excitons. JETP Lett. 83, 146 (2006).
<a href="https://doi.org/10.1134/S0021364006040047">https://doi.org/10.1134/S0021364006040047</a>
</li>
<li>L.S. Levitov, B.D. Smons, L.V. Butov. Pattern formation as a signature of quantum degeneracy in a cold exciton system. Phys. Rev. Lett. 94, 176404 (2005).
<a href="https://doi.org/10.1103/PhysRevLett.94.176404">https://doi.org/10.1103/PhysRevLett.94.176404</a>
</li>
<li>A.V. Paraskevov, T.V. Khabarova. On the microscopic theory of the exciton ring fragmentation. Phys. Lett. A 368, 151 (2007).
<a href="https://doi.org/10.1016/j.physleta.2007.04.001">https://doi.org/10.1016/j.physleta.2007.04.001</a>
</li>
<li>R.B. Saptsov. On the instability of a homogeneous state of a weakly interacting Bose gas under external cooling. JETP Lett. 86, 687 (2008).
<a href="https://doi.org/10.1134/S0021364007220158">https://doi.org/10.1134/S0021364007220158</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Pattern formation of indirect excitons in coupled quantum wells. J. Phys. Condens. Matter 18, 9659 (2006).
<a href="https://doi.org/10.1088/0953-8984/18/42/012">https://doi.org/10.1088/0953-8984/18/42/012</a>
</li>
<li>C.S. Liu, H.G. Luo, W.C. Wu. Theoretical modeling of spatial- and temperature-dependent exciton energy in coupled quantum wells. Phys. Rev. B 80, 125317 (2010).
<a href="https://doi.org/10.1103/PhysRevB.80.125317">https://doi.org/10.1103/PhysRevB.80.125317</a>
</li>
<li>V.K. Mukhomorov. On the possibility of realizing a periodic low-density spatial distribution of excitons. Phys. Solid State 52, 241 (2010).
<a href="https://doi.org/10.1134/S1063783410020046">https://doi.org/10.1134/S1063783410020046</a>
</li>
<li>J. Wilkes, E.A. Muljarov, A.L. Ivanov. Drift-diffusion model of the fragmentation of the external ring structure in the photoluminescence pattern emitted by indirect excitons in coupled quantum wells. Phys. Rev. Lett. 109, 187402 (2012).
<a href="https://doi.org/10.1103/PhysRevLett.109.187402">https://doi.org/10.1103/PhysRevLett.109.187402</a>
</li>
<li> S.V. Andreev. Thermodynamic model of the macroscopically ordered exciton state. Phys. Rev. Lett. 110, 146401 (2013).
<a href="https://doi.org/10.1103/PhysRevLett.110.146401">https://doi.org/10.1103/PhysRevLett.110.146401</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Coulomb correlations and electron-hole liquid in double quantum wells. JETP Lett. 97, 726 (2013) .
<a href="https://doi.org/10.1134/S0021364013110027">https://doi.org/10.1134/S0021364013110027</a>
</li>
<li> V.S. Babichenko, I.Ya. Polishchuk. Quantum phase transition of electron-hole liquid in coupled quantum wells. Phys. Rev. B 94, 165304 (2016).
<a href="https://doi.org/10.1103/PhysRevB.94.165304">https://doi.org/10.1103/PhysRevB.94.165304</a>
</li>
<li> V.I. Sugakov. Islands of exciton condensed phases in a two-dimensional system, the distribution of their sizes and coherence in position. Solid State Commun. 134, 63, (2005).
<a href="https://doi.org/10.1016/j.ssc.2004.07.078">https://doi.org/10.1016/j.ssc.2004.07.078</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells: Temperature effects. Phys. Solid State 48, 1984 (2006).
<a href="https://doi.org/10.1134/S1063783406100283">https://doi.org/10.1134/S1063783406100283</a>
</li>
<li> M.Y. J. Tan, N.D. Drummond, R.J. Needs. Exciton and biexciton energies in bilayer systems. Phys. Rev. B 71, 033303 (2005).
<a href="https://doi.org/10.1103/PhysRevB.71.033303">https://doi.org/10.1103/PhysRevB.71.033303</a>
</li>
<li> Ch. Shindler, R. Zimmermann. Analysis of the exciton-exciton interaction in semiconductor quantum wells. Phys. Rev. B 78, 045313 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.045313">https://doi.org/10.1103/PhysRevB.78.045313</a>
</li>
<li> A.D. Meyertholen, M.M. Fogler. Biexcitons in two-dimensional systems with spatially separated electrons and holes. Phys. Rev. B 78, 235307 (2008).
<a href="https://doi.org/10.1103/PhysRevB.78.235307">https://doi.org/10.1103/PhysRevB.78.235307</a>
</li>
<li> Yu.E. Lozovik, O.I. Berman. Phase transitions in a system of two coupled quantum wells. JETP Lett. 64, 573 (1996).
<a href="https://doi.org/10.1134/1.567264">https://doi.org/10.1134/1.567264</a>
</li>
<li> A. A. Chernyuk, V. I. Sugakov. Ordered dissipative structures in exciton systems in semiconductor quantum wells. Phys. Rev. B 74, 085303 (2006).
<a href="https://doi.org/10.1103/PhysRevB.74.085303">https://doi.org/10.1103/PhysRevB.74.085303</a>
</li>
<li> M. Remeika, J.C. Graves, A.T. Hammack, A.D. Meyertolen, M.M. Fogler, L.V. Butov, M. Hanson, A.C. Gossard. Localization-delocalization transition of indirect excitons in lateral electrostatic lattices. Phys. Rev. Lett. 102, 186803 (2009).
<a href="https://doi.org/10.1103/PhysRevLett.102.186803">https://doi.org/10.1103/PhysRevLett.102.186803</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov. Exciton phase transitions in semiconductor quantum wells with disc-shaped electrode. Solid State Commun. 149, 2185 (2009).
<a href="https://doi.org/10.1016/j.ssc.2009.09.015">https://doi.org/10.1016/j.ssc.2009.09.015</a>
</li>
<li> V.B. Timofeev, A.V. Gorbunov, D.A. Demin. Bose-Einstein condensation of dipolar excitons in lateral traps. Low Temp. Phys. 37, 179 (2011).
<a href="https://doi.org/10.1063/1.3570931">https://doi.org/10.1063/1.3570931</a>
</li>
<li> A.V. Gorbunov, V.B. Timofeev. Phase diagram of the Bose condensation of dipolar excitons in GaAs/AlGaAs quantum-well heterostructures. JETP Lett. 96, 143 (2012).
<a href="https://doi.org/10.1134/S0021364012140056">https://doi.org/10.1134/S0021364012140056</a>
</li>
<li> V.V. Tomylko, I.Yu. Goliney, A.A. Chernyuk, V.I. Sugakov. Exciton density pattern formation in laser irradiated quantum wells under electrodes of various shapes. Low Temp. Phys. 40, 975 (2014).
<a href="https://doi.org/10.1063/1.4892648">https://doi.org/10.1063/1.4892648</a>
</li>
<li> M. Remeika, A.T. Hammack, S.V. Poltavtsev, L.V. Butov et al. Pattern formation in the exciton inner ring. Phys. Rev. B 88, 125307 (2013).
<a href="https://doi.org/10.1103/PhysRevB.88.125307">https://doi.org/10.1103/PhysRevB.88.125307</a>
</li>
<li> A.A. Chernyuk, V.I. Sugakov, V.V. Tomylko. Model of fragmentation of the exciton inner ring in semiconductor quantum wells. Phys. Rev. B 90, 205308 (2014).
<a href="https://doi.org/10.1103/PhysRevB.90.205308">https://doi.org/10.1103/PhysRevB.90.205308</a>
</li>
<li> V.I. Sugakov. Exciton condensation in quantum wells. Self-organization against Bose-condensation. Ukr. J. Phys. 56, 1124 (2011).
</li>
<li> V.I. Sugakov. Ordered structures of exciton condensed phases in the presence of an inhomogeneous potential. J. Phys. Condens. Matter 21, 275803 (2009).
<a href="https://doi.org/10.1088/0953-8984/21/27/275803">https://doi.org/10.1088/0953-8984/21/27/275803</a>
</li>
<li> O.I. Dmytruk, V.I. Sugakov. Amplification and passing through the barrier of the exciton condensed phase pulse in double quantum wells. Physica B 436, 80 (2014).
<a href="https://doi.org/10.1016/j.physb.2013.11.055">https://doi.org/10.1016/j.physb.2013.11.055</a>
</li>
<li> V. Mykhaylovskyy, V. Sugakov, I. Goliney. Excitation of pulses of excitonic condensed phase at steady pumping. J. Nanophotonics 10, 033504 (2016).
<a href="https://doi.org/10.1117/1.JNP.10.033504">https://doi.org/10.1117/1.JNP.10.033504</a>
</li>
<li> G. Nicolis, I. Prigogine. Self-Organization in Non-Equilibrium Systems (Wiley, 1977).
</li>
<li> B.S. Kerner, V.V. Osipov. Autosolitons. Sov. Phys. Usp. 32, 101 (1989).
<a href="https://doi.org/10.1070/PU1989v032n02ABEH002679">https://doi.org/10.1070/PU1989v032n02ABEH002679</a>
</li>
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.