Самоподібний режим фрагментації металів при інтенсивній пластичній деформації

Автор(и)

  • A. V. Khomenko Sumy State University

DOI:

https://doi.org/10.15407/ujpe64.6.487

Ключові слова:

межа зерна, дислокацiя, фазовий перехiд, фазова дiаграма, внутрiшня енергiя, адитивний шум, самоподiбнiсть

Анотація

В рамках нерiвноважної еволюцiйної термодинамiки проведено подальше дослiдження впливу адитивних флуктуацiй на кiнетику структурних дефектiв при iнтенсивнiй пластичнiй деформацiї, що являє новий метод опису режимiв фрагментацiї та вiдповiдних процесiв самоорганiзацiї. Встановлено, що у фрагментованому металевому зразку спостерiгається самоподiбна поведiнка, при якiй утворюється множина граничних структур iз рiзними розмiрами зерен. Такий режим реалiзується за умови, що розподiл ймовiрностi реалiзацiї значень густини меж зерен має степеневий вид. Порiвняння отриманих результатiв у формах Iто та Стратоновича продемонструвало вiдсутнiсть якiсних змiн у поведiнцi системи.

Посилання

R.Z. Valiev, I.V. Alexandrov. Bulk Nanostructured Metallic Materials: Production, Structure, and Properties (Akademkniga, 2007) (in Russian).

R.M. Kronover. Fractals and Chaos in Dynamic Systems. Fundamentals of Theory (Postmarket, 2000) (in Russian).

Ya.E. Beigelzimer, V.N. Varyukhin, D.V. Orlov, S.G. Synkov. Screw Extrusion-Process of Deformation Accumulation (TEAN, 2003) (in Russian).

A. Carpinteri, A. Spagnoli, S. Vantadori. A multifractal analysis of fatigue crack growth and its application to concrete. Engng. Fract. Mech. 77, 974 (2010). https://doi.org/10.1016/j.engfracmech.2010.01.019

L. Molenta, A. Spagnoli, A. Carpinteri, Rh. Jones. Fractals and the lead crack airframe lifing framework. Proc. Struct. Integr. 2, 3081 (2016). https://doi.org/10.1016/j.prostr.2016.06.385

V.S. Ivanova, A.A. Oksogoev. On the relationship of plastic deformation processes with a fractal structure corresponding to the change in the deformation scale level. Fiz. Mezomekh. 9, 17 (2006) (in Russian).

A.A. Ivanova, V.V. Lepov, V.S. Achikasova, A.M. Ivanov. Application of the statistical fractal concept in the analysis of the specimen deformation surfaces. Nauka Obrazov. No. 4, 89 (2016) (in Russian).

V.A. Oborin, M.V. Bannikov, Y.V. Bayandin, M.A. Sokovikov, D.A. Bilalov, O.B. Naimark. Fractal analysis of fracture surface of aluminum alloy AMg6 under fatigue and dynamic loading. PNRPU Mech. Bull. No. 2, 116 (2015). https://doi.org/10.15593/perm.mech/2015.2.07

D.J. Amit. Field Theory, the Renormalization Group, and Critical Phenomena (McGraw-Hill, 1978).

O.I. Olemskoi, O.V. Yushchenko, T.I. Zhylenko. Study of conditions for hierarchical condensation near the phase equilibrium. Ukr. J. Phys. 56, 474 (2011).

L.S. Metlov. Nonequilibrium Evolution Thermodynamics and Its Applications (Noulidge, 2014) (in Russian).

L.S. Metlov. Nonequilibrium dynamics of a two-defect system under severe load. Phys. Rev. E. 90, 022124 (2014). https://doi.org/10.1103/PhysRevE.90.022124

A.V. Khomenko, D.S. Troshchenko, L.S. Metlov. Thermodynamics and kinetics of solids fragmentation at severe plastic deformation. Condens. Matter Phys. 18, 33004 (2015). https://doi.org/10.5488/CMP.18.33004

A.V. Khomenko, D.S. Troshchenko, L.S.Metlov.Modelling of kinetics of modes of a fragmentation of materials at a severe plastic deformation. Metallofiz. Noveish. Tekhnol. 39, 265 (2017) (in Russian).

I.A. Lyashenko, A.V. Khomenko, L.S. Metlov. Thermodynamics and kinetics of boundary friction. Tribol. Int. 44, 476 (2011). https://doi.org/10.1016/j.triboint.2010.12.005

D.S. Troshchenko. Non-Equilibrium Evolution Thermodynamics of Metal Fragmentation with Account of Stochasticity. Ph.D. thesis (Sumy State Unuversity, 2018) (in Ukrainian).

A.D. Pogrebnyak, A.A. Bagdasaryan, I.V. Yakushchenko, V.M. Beresnev. The structure and properties of high-entropy alloys and nitride coatings based on them. Russ. Chem. Rev. 83, 1027 (2014). https://doi.org/10.1070/RCR4407

A.A. Goncharov, A.N. Yunda, R.Yu. Bondarenko, S.A. Goncharova. Modelling of thermal processes in the cutting insert with a protective coating. In Proceedings of the 2016 International Conference on Nanomaterials: Application and Properties (NAP-2016) (Sumy State University, 2016), Vol. 5, p. 02NEA06. https://doi.org/10.1109/NAP.2016.7757301

O.V. Khomenko, D.S. Troshchenko, Ya.O. Kravchenko, M.O. Khomenko. Additive gaussian noise effect on phase diagram of metal's fragmentation modes during severe plastic deformation. J. Nano- Electron. Phys. 9, 03045 (2017) (in Ukrainian). https://doi.org/10.21272/jnep.9(3).03045

A.V. Khomenko, Ya.A. Lyashenko. Periodic intermittent regime of a boundary flow. Tech. Phys. 55, 26 (2010). https://doi.org/10.1134/S1063784210010056

A.V. Khomenko. Noise influence on solid-liquid transition of ultrathin lubricant film. Phys. Lett. A 329, 140 (2004). https://doi.org/10.1016/j.physleta.2004.06.091

A.V. Khomenko, I.A. Lyashenko. Phase dynamics and kinetics of thin lubricant film driven by correlated temperature fluctuations. Fluct. Noise Lett. 7, L111 (2007). https://doi.org/10.1142/S0219477507003763

A.M. Glezer, I.E. Permyakova. Melt-Quenched Nanocrystals (CRC Press, 2013). https://doi.org/10.1201/b15028

A.M. Glezer, L.S. Metlov. Physics of megaplastic (severe) deformation in solids. Phys. Solid State 52, 1162 (2010). https://doi.org/10.1134/S1063783410060089

O.V. Khomenko, Ya.O. Lyashenko. Phase dynamics of a thin lubricant film between solid surfaces at the deformation defect of shear modulus. J. Phys. Stud. 11, 268 (2007) (in Ukrainian).

M.M. Protodyakonov , R.I. Teder, E.I. Ilnitskaya, O.P. Yakobashvili, I.B. Safronova, A.I. Tsykin, I.O. Kvashnina, N.N. Pavlova, L.N. Levushkin, Yu.V. Zefirov, A.A. Savelyev, M.O. Dolgova. The Distribution and Correlation of Physical Properties of the Rocks: A Reference Guide (Nedra, 1981) (in Russian).

E.V. Kozlov, N.A. Popova, N.A. Koneva. Regularities in plastic deformation of ultrafine-grained metallic materials. Deform. Razrush. Mater. No. 5, 2 (2014) (in Russian).

W. Horsthemke, R. Lefever. Noise-Induced Transitions. Theory and Applications in Physics, Chemistry, and Biology (Springer, 1984).

G.A. Salishchev, S.Yu. Mironov, S.V. Zherebtsov, A.N. Belyakov. Influence of plastic deformation on the change of boundary misorientation in metallic materials. Fiz. Mekh. Mater. 25, 42 (2016) (in Russian).

H. Risken. The Fokker-Planck Equation. Methods of Solution and Applications (Springer, 1989). https://doi.org/10.1007/978-3-642-61544-3

Yu. L. Klimontovich. Nonlinear Brownian motion. Phys. Usp. 37, 737 (1994). https://doi.org/10.1070/PU1994v037n08ABEH000038

C.W. Gardiner. Handbook of Stochastic Methods for Physics, Chemistry and the Natural Sciences (Springer, 1983). https://doi.org/10.1007/978-3-662-02377-8

Shuyong Jiang, Yanqiu Zhang, Lihong Zhao, Yufeng Zheng. Influence of annealing on NiTi shape memory alloy subjected to severe plastic deformation. Intermetallics 32, 344 (2013). https://doi.org/10.1016/j.intermet.2012.07.025

Wen Ma, Bin Chen, Fu-Shun Liu, Qing Xu. Phase transformation behaviors and mechanical properties of Ti50Ni49Fe1 alloy with severe plastic deformation. Rare Metals 32, 448 (2013). https://doi.org/10.1007/s12598-013-0157-3

W.H. Press, S.A. Teukolsky, W.T. Vetterling, B.P. Flannery. Numerical Recipes: The Art of Scientific Computing (Cambridge Univ. Press, 2007).

A.I. Olemskoi, A.V. Khomenko, D.O. Kharchenko. Self-organized criticality within fractional Lorenz scheme. Physica A 323, 263 (2003). https://doi.org/10.1016/S0378-4371(02)01991-X

A.V. Khomenko, I.A. Lyashenko, V.N. Borisyuk. Self-similar phase dynamics of boundary friction. Ukr. J. Phys. 54, 1139 (2009).

A.M. Nazarenko. Econometrics (Sumy State Univ., 2003) (in Russian).

V.V. Malashenko. Collective overcoming of point defects by dislocations in the dynamic region. Fiz. Tverd. Tela 56, 1528 (2014) (in Russian). https://doi.org/10.1134/S1063783414080186

N.V. Prodanov, A.V. Khomenko. Computational investigation of the temperature influence on the cleavage of a graphite surface. Surf. Sci. 604, 730 (2010). https://doi.org/10.1016/j.susc.2010.01.024

A.I. Bazhin, A.A. Goncharov, A.D. Pogrebnyak, V.A. Stupak, S.A. Goncharova. Superhardness effect in transition-metal diborides films. Phys. Met. Metall. 117, 594 (2016). https://doi.org/10.1134/S0031918X16060028

A.V. Khomenko, N.V. Prodanov. Study of friction of Ag and Ni nanoparticles: an atomistic approach. J. Phys. Chem. C 114, 19958 (2010). https://doi.org/10.1021/jp108981e

G.A. Malygin. Kinetic mechanism of the formation of fragmented dislocation structures upon large plastic deformations. Phys. Solid State 44, 2072 (2002). https://doi.org/10.1134/1.1521458

Опубліковано

2019-08-02

Як цитувати

Khomenko, A. V. (2019). Самоподібний режим фрагментації металів при інтенсивній пластичній деформації. Український фізичний журнал, 64(6), 487. https://doi.org/10.15407/ujpe64.6.487

Номер

Розділ

Загальна фізика