Quantum Rotating Black Holes (Recovering Geometry in a Quantum World)

Authors

  • R. Casadio Dipartimento di Fisica e Astronomia, Universit`a di Bologna, I.N.F.N., Sezione di Bologna, I.S. FLAG

DOI:

https://doi.org/10.15407/ujpe69.7.466

Keywords:

classical geometry, quantum rotating black holes, quantum gravity, Planck scale, gravitational collapse, Schwarzschild geometry

Abstract

Classical geometries for spherically symmetric systems can be effectively obtained from quantum coherent states for the relevant degrees of freedom. This description replaces the classical singularity of black holes with integrable structures in which tidal forces remain finite, and there is no inner Cauchy horizon. It is then shown how the extension to rotating systems can avoid the classical inner horizon provided the rotation is not ultra-rigid.

References

R. Casadio, W. Feng, I. Kuntz, F. Scardigli. Minimum length (scale) in quantum field theory, generalized uncertainty principle and the non-renormalisability of gravity. Phys. Lett. B 838, 137722 (2023) [arXiv:2210.12801 [hep-th]].

https://doi.org/10.1016/j.physletb.2023.137722

R.L. Arnowitt, S. Deser, C.W. Misner. Dynamical structure and definition of energy in general relativity. Phys. Rev. 116, 1322 (1959).

https://doi.org/10.1103/PhysRev.116.1322

R. Casadio, F. Scardigli. Horizon wave-function for single localized particles: GUP and quantum black hole decay. Eur. Phys. J. C 74, 2685 (2014) [arXiv:1306.5298 [gr-qc]].

https://doi.org/10.1140/epjc/s10052-013-2685-2

X. Calmet, R. Casadio. The horizon of the lightest black hole. Eur. Phys. J. C 75, 445 (2015) [arXiv:1509.02055 [hep-th]].

https://doi.org/10.1140/epjc/s10052-015-3668-2

S.W. Hawking, G.F.R. Ellis. The Large Scale Structure of Space-Time (Cambridge University Press, Cambridge, 1973).

https://doi.org/10.1017/CBO9780511524646

X. Calmet, S.D.H. Hsu. A brief history of Hawking's information paradox. Europhys. Lett. 139, 49001 (2022) [arXiv:2207.08671 [hep-th]].

https://doi.org/10.1209/0295-5075/ac81e8

J.D. Bekenstein. Black holes and entropy. Phys. Rev. D 7, 2333 (1973).

https://doi.org/10.1103/PhysRevD.7.2333

J.R. Oppenheimer, H. Snyder. On continued gravitational contraction. Phys. Rev. 56, 455 (1939).

https://doi.org/10.1103/PhysRev.56.455

R. Casadio. A quantum bound on the compactness. Eur. Phys. J. C 82, 10 (2022) [arXiv:2103.14582 [gr-qc]].

https://doi.org/10.1140/epjc/s10052-021-09980-2

R. Casadio. Quantum dust cores of black holes. Phys. Lett. B 843, 138055 (2023) [arXiv:2304.06816 [gr-qc]].

https://doi.org/10.1016/j.physletb.2023.138055

W. M¨uck. On the number of soft quanta in classical field configurations. Can. J. Phys. 92, 973 (2014) [arXiv:1306.6245 [hep-th]].

https://doi.org/10.1139/cjp-2013-0712

S. Bose, A. Mazumdar,. Toroˇs. Infrared scaling for a graviton condensate. Nucl. Phys. B 977, 115730 (2022) [arXiv: 2110.04536 [gr-qc]].

https://doi.org/10.1016/j.nuclphysb.2022.115730

R. Casadio, A. Giugno, A. Giusti, M. Lenzi. Quantum corpuscular corrections to the Newtonian potential. Phys. Rev. D 96, 044010 (2017) [arXiv:1702.05918 [gr-qc]].

https://doi.org/10.1103/PhysRevD.96.044010

L. Berezhiani, G. Dvali, O. Sakhelashvili. De Sitter space as a BRST invariant coherent state of gravitons. Phys. Rev. D 105, 025022 (2022) [arXiv:2111.12022 [hep-th]].

https://doi.org/10.1103/PhysRevD.105.025022

R. Casadio. Geometry and thermodynamics of coherent quantum black holes. Int. J. Mod. Phys. D 31, 2250128 (2022) [arXiv:2103.00183 [gr-qc]].

https://doi.org/10.1142/S0218271822501280

M. Visser. Lorentzian Wormholes: From Einstein to Hawking (American Institute of Physics, 1996).

R.P. Feynman, F.B. Morinigo, W.G. Wagner, B. Hatfield. Feynman Lectures on Gravitation (Addison-Wesley Pub. Co., 1995).

V.N. Lukash, V.N. Strokov. Space-times with integrable singularity. Int. J. Mod. Phys. A 28, 1350007 (2013) [arXiv:1301.5544 [gr-qc]].

https://doi.org/10.1142/S0217751X13500073

C.W. Misner, D.H. Sharp. Relativistic equations for adiabatic, spherically symmetric gravitational collapse. Phys. Rev. 136, B571 (1964).

https://doi.org/10.1103/PhysRev.136.B571

W.C. Hernandez, C.W. Misner. Observer time as a coordinate in relativistic spherical hydrodynamics. Astrophys. J. 143, 452 (1966).

https://doi.org/10.1086/148525

R. Casadio, A. Giusti, J. Ovalle. Quantum Reissner-Nordstr¨om geometry: Singularity and cauchy horizon. Phys. Rev. D 105, 124026 (2022) [arXiv:2203.03252 [gr-qc]].

https://doi.org/10.1103/PhysRevD.105.124026

R. Carballo-Rubio, F. Di Filippo, S. Liberati, C. Pacilio, M. Visser. Inner horizon instability and the unstable cores of regular black holes. J. High Energy Phys. 05, 132 (2021) [arXiv:2101.05006 [gr-qc]].

https://doi.org/10.1007/JHEP05(2021)132

M. Gurses, F. Gursey. Lorentz covariant reatment of the Kerr-Schild geometry. J. Math. Phys. 16, 2385 (1975).

https://doi.org/10.1063/1.522480

R.P. Kerr. Gravitational field of a spinning mass as an example of algebraically special metrics. Phys. Rev. Lett. 11, 237 (1963).

https://doi.org/10.1103/PhysRevLett.11.237

R. Casadio, A. Giusti, J. Ovalle. Quantum rotating black holes. J. High Energy Phys. 05, 118 (2023) [arXiv: 2303.02713 [gr-qc]].

https://doi.org/10.1007/JHEP05(2023)118

W. Feng, R. da Rocha, R. Casadio. Quantum hair and entropy for slowly rotating quantum black holes. To appear in Eur. Phys. J. C [arXiv:2401.14540 [gr-qc]].

Published

2024-08-27

How to Cite

Casadio, R. (2024). Quantum Rotating Black Holes (Recovering Geometry in a Quantum World). Ukrainian Journal of Physics, 69(7), 466. https://doi.org/10.15407/ujpe69.7.466

Issue

Section

Non-Euclidean Geometry in Modern Physics and Mathematics