Peculiarities of Eu3+ Photoluminescence in Opal Photonic Crystal Films and Heterostructures Based of Them
DOI:
https://doi.org/10.15407/ujpe68.12.785Keywords:
synthesis of monodisperse silica particles, opal film, photonic stop band, opal heterostructure, suppression of emissionAbstract
Single opal films and heterostructures based on them grown by the method of vertically moving meniscus are characterized by the reflection spectroscopy technique and then impregnated with the Eu(CH3COO)3 × H2O salt. The suppression of the Eu3+ ion emission in single opal films is clearly detected within the photonic stop-band range. The weaker manifestation of this effect in heterostructures is more likely due to interface defects causing both the appearance of permitted states in the photonic stop band and the scattering of radiation in the direction of observation. With the further impregnation of opal films with glycerol to reduce the dielectric contrast from 1.85 to 1.13, the emission spectrum is mainly determined by the Eu3+ coordination environment effects accompanied with the broadening of bands and the spectral intensity redistribution.
References
V.P. Bykov. Spontaneous emission from a medium with a band spectrum. Sov. J. Quantum Electron. 4, 861 (1975).
https://doi.org/10.1070/QE1975v004n07ABEH009654
E. Yablonovitch. Inhibited spontaneous emission in solidstate physics and electronics. Phys. Rev. Lett. 58, 2059 (1987).
https://doi.org/10.1103/PhysRevLett.58.2059
S. John. Strong localization of photons in certain disordered dielectric superlattices. Phys. Rev. Lett. 58, 2486 (1987).
https://doi.org/10.1103/PhysRevLett.58.2486
M.A. Butt, S.N. Khonina, N.L. Kazanskiy. Recent advances in photonic crystal optical devices: A review. Opt. Laser Technol. 142 (2021).
https://doi.org/10.1016/j.optlastec.2021.107265
A. Sharma, K. Goswami, H. Mondal, T. Datta, M. Sen. A review on photonic crystal based all-optical logic decoder: Linear and nonlinear perspectives. Opt. Quantum Electron. 54, 90 (2022).
https://doi.org/10.1007/s11082-021-03473-y
X.T. He, C.H. Guo, G.J. Tang, M.Y. Li, X.D. Chen, J.W. Dong. Topological polarization beam splitter in dualpolarization all-dielectric valley photonic crystals. Phys. Rev. Appl. 18, (2022).
https://doi.org/10.1103/PhysRevApplied.18.044080
A.S. Kuchyanov, P.A. Chubakov, A.I. Plekhanov. Highly sensitive and fast response gas sensor based on a light reflection at the glass-photonic crystal interface. Opt. Commun. 351, 109 (2015).
https://doi.org/10.1016/j.optcom.2015.04.045
F. Gallego-G'oimez, M. Morales, A. Blanco, C. L'opez. Bare silica opals for real-time humidity sensing. Adv. Mater. Technol. 4, 1800493 (2019).
https://doi.org/10.1002/admt.201800493
T. Li, G. Liu, H. Kong, G. Yang, G. Wei, X. Zhou. Recent advances in photonic crystal-based sensors. Coord. Chem. Rev. 475, 31 (2023).
https://doi.org/10.1016/j.ccr.2022.214909
M. Gaio, M. Peruzzo, R. Sapienza. Tuning random lasing in photonic glasses. Opt. Lett. 40, 1611 (2015).
https://doi.org/10.1364/OL.40.001611
S. Kedia, S. Sinha. Random lasing from dyed polystyrene spheres in disordered environments. J. Laser Appl. 30, (2018).
https://doi.org/10.2351/1.5041061
Y. Fu, T. Zhai. Distributed feedback organic lasing in photonic crystals. Front. Optoelectron. 13, 18 (2020).
https://doi.org/10.1007/s12200-019-0942-1
J. Wang, J. Zhou, K. Adelihan, F. Shen, H. Li. Antireflection films based on large-area 2D hollow SiO2 spheres monolayer opals. J. Inorg. Organomet. Polym. Mater. 29, 72 (2019).
https://doi.org/10.1007/s10904-018-0966-9
L. Li, J. Li, J. Xu, Z. Liu. Recent advances of polymeric photonic crystals in molecular recognition. Dye. Pigment. 205, (2022).
https://doi.org/10.1016/j.dyepig.2022.110544
A. Lonergan, C. O'Dwyer. Many facets of photonic crystals: From optics and sensors to energy storage and photocatalysis. Adv. Mater. Technol. 8, 2201410 (2022).
https://doi.org/10.1002/admt.202201410
Q. Sun, B. Zhang, Y. He, L. Sun, P. Hou, Z. Gan, L. Yu, L. Dong. Design and synthesis of black phosphorus quantum dot sensitized inverse opal TiO2 photonic crystal with outstanding photocatalytic activities. Appl. Surf. Sci. 609, 155442 (2023).
https://doi.org/10.1016/j.apsusc.2022.155442
J.D. Joannopoulos, S.G. Johnson, J.N. Winn, R.D. Meade. Photonic Crystals: Molding the Flow of Light (Princeton University Press, 2008) [ISBN: 978-0-6911-2456-8].
S.A. Estrada Alvarez, I. Guger, J. Febbraro, A. Turak, H.R. Lin, Y. Salinas, O. Br¨uggemann. Synthesis and spatial order characterization of controlled silica particle sizes organized as photonic crystals arrays. Materials (Basel) 15, 5864 (2022).
https://doi.org/10.3390/ma15175864
M. Matamoros-Ambrocio, E. S'anchez-Mora, E. G'omezBarojas, J.A. Luna-L'opez. Synthesis and study of the optical properties of PMMA microspheres and opals. Polymers (Basel) 13, 2171 (2021).
https://doi.org/10.3390/polym13132171
D.A. Kurdyukov, A.B. Pevtsov, A.N. Smirnov, M.A. Yagovkina, V.Y. Grigorev, V.V. Romanov, N.T. Bagraev, V.G. Golubev. Formation of three-dimensional arrays of magnetic clusters NiO, Co3O4, and NiCo2O4 by the matrix method. Phys. Solid State. 58, 1216 (2016).
https://doi.org/10.1134/S1063783416060275
E.Y. Stovpiaga, D.A. Eurov, D.A. Kurdyukov, A.N. Smirnov, M.A. Yagovkina, V.Y. Grigorev, V.V. Romanov, D.R. Yakovlev, V.G. Golubev. The synthesis of clusters of iron oxides in mesopores of monodisperse spherical silica particles. Phys. Solid State. 59, 1623 (2017).
https://doi.org/10.1134/S1063783417080273
A.B. Sal, V. Moiseyenko, M. Dergachov, A. Yevchik, G. Dovbeshko. Manifestation of metastable γ-TeO2 phase in the Raman spectrum of crystals grown in synthetic opal pores. Ukr. J. Phys. Opt. 14, 119 (2013).
https://doi.org/10.3116/16091833/14/3/119/2013
V.S. Gorelik, D. Bi, G.T. Fei. Optical properties of mesoporous photonic crystals, filled with dielectrics, ferroelectrics and piezoelectrics. J. Adv. Dielectr. 7, 1750038 (2017).
https://doi.org/10.1142/S2010135X17500382
M. Derhachov, V. Moiseienko, N. Kutseva, B. Abu Sal, R. Holze, S. Pliaka, A. Yevchyk. Structure, optical and electric properties of opal-bismuth silicate nanocomposites. Acta Phys. Pol. A 133, 847 (2018).
https://doi.org/10.12693/APhysPolA.133.847
S.S. Kurbanov, T.W. Kang. Photoluminescence properties of bare and ZnO infilled artificial opal. Opt. Commun. 282, 2040 (2009).
https://doi.org/10.1016/j.optcom.2009.02.010
V.G. Golubev. Three-dimensional photonic crystals based on opal-semiconductor and opal-metal nanocomposites. NATO Sci. Peace Secur. Ser. B Phys. Biophys. 101 (2010).
https://doi.org/10.1007/978-90-481-3807-4_8
M. Kepi'nska, A. Starczewska, I. Bednarczyk, J. Szala, P. Szperlich, K. Mistewicz. Fabrication and characterisation of SbI3-opal structures. Mater. Lett. 130, 17 (2014).
https://doi.org/10.1016/j.matlet.2014.05.063
O.K. Alimov, T.T. Basiev, Y.V. Orlovskii, V.V. Osiko, M.I. Samoilovich. Conversion of the luminescence of laser dyes in opal matrices to stimulated emission. Quantum Electron. 38, 665 (2008).
https://doi.org/10.1070/QE2008v038n07ABEH013714
V. Moiseyenko, M. Dergachov, A.B. Sal, A. Yevchik. Modification of optical properties of 2,5-bis(2-benzoxazolyl)hydroquinone in opal photonic crystals. Ukr. J. Phys. Opt. 14, 225 (2013).
https://doi.org/10.3116/16091833/14/4/225/2013
Y. Nishijima, S. Juodkazis. Optical characterization and lasing in three-dimensional opal-structures. Front. Mater. 2, 49 (2015).
https://doi.org/10.3389/fmats.2015.00049
J. Yu, J. Lei, L. Wang, J. Zhang, Y. Liu. TiO2 inverse opal photonic crystals: Synthesis, modification, and applications - A review. J. Alloys Compd. 769, 740 (2018).
https://doi.org/10.1016/j.jallcom.2018.07.357
P.S. Hung, C.H. Liao, B.H. Huang, W.A. Chung, S.Y. Chang, P.W. Wu. Formation of free-standing inverse opals with gradient pores. Nanomaterials. 10, 1923 (2020).
https://doi.org/10.3390/nano10101923
E.V. Panfilova, V.A. Dyubanov. Automation of the opal colloidal films obtaining processes. In: Advances in Automation. RusAutoCon 2019. Lecture Notes in Electrical Engineering. Springer 641, 2020, p. 1044.
https://doi.org/10.1007/978-3-030-39225-3_110
M. Muldarisnur, F. Marlow. Structure and optical properties of opal films made by an out-of-plane electric fieldassisted capillary deposition method. ACS Omega. 7, 8084 (2022).
https://doi.org/10.1021/acsomega.1c07391
Z. Yang, M. Koyama, H. Fudouzi, T. Hojo, E. Akiyama. Availability of opal photonic crystal films for visualizing heterogeneous strain evolution in steels: Example of L¨uders deformation. Tetsu-to-Hagane. 107, 681 (2021).
https://doi.org/10.2355/tetsutohagane.TETSU-2021-028
P.G. O'Brien, N.P. Kherani, A. Chutinan, G.A. Ozin, S. John, S. Zukotynski. Silicon photovoltaics using conducting photonic crystal back-reflectors. Adv. Mater. 20, 1577 (2008).
https://doi.org/10.1002/adma.200702219
T. Winter, A. Boehm, V. Presser, M. Gallei. Dye-loaded mechanochromic and pH-responsive elastomeric opal films. Macromol. Rapid Commun. 42, 2000557 (2021).
https://doi.org/10.1002/marc.202000557
S.G. Romanov. Optical characterisation of opal photonic hetero-crystals. NATO Sci. Ser. II Math. Phys. Chem. 309 (2004).
https://doi.org/10.1007/1-4020-2173-9_27
W. Khunsin, S.G. Romanov, C.M. Sotomayor Torres, J. Ye, R. Zentel. Optical transmission in triple-film heteroopals. J. Appl. Phys. 104, 013527 (2008).
https://doi.org/10.1063/1.2951958
A.Z. Khokhar, F. Rahman, N.P. Johnson. Photonic crystal heterostructures from self-assembled opals. Appl. Phys. A Mater. Sci. Process. 102, 281 (2011).
https://doi.org/10.1007/s00339-010-6145-7
L. Zhang, B. Liu, J. Wang, S. Tao, Q. Yan. A general strategy to fabricate photonic crystal heterostructure with Programmed photonic stopband. J. Colloid Interface Sci. 509, 318 (2018).
https://doi.org/10.1016/j.jcis.2017.08.004
D. Boyang, M. Bardosova, I. Povey, M.E. Pemble, S.G. Romanov. Transmission spectrum transformation at photonic hetero-crystal interfaces - Polarization anisotropy. In: 10th Anniversary International Conference on Transparent Optical Networks, Athens, Greece, 2008, p. 68.
D.A. Eurov, D.A. Kurdyukov, E.Y. Trofimova, S.A. Yakovlev, L.V. Sharonova, A.V. Shvidchenko, V.G. Golubev. Preparation of colloidal films with different degrees of disorder from monodisperse spherical silica particles. Phys. Solid State. 55, 1718 (2013).
https://doi.org/10.1134/S1063783413080106
V.S. Gorelik, S.N. Ivicheva, L.S. Lepnev, A.O. Litvinova, V.N. Moiseenko. Emission of opal photonic crystals filled with europium and terbium. Inorg. Mater. 51, 525 (2015).
https://doi.org/10.1134/S0020168515060060
V.S. Gorelik, L.S. Lepnev, A.O. Litvinova. Photoluminescence of terbium nitrate hexahydrate incorporated into pores of opal photonic crystals. Inorg. Mater. 53, 847 (2017).
https://doi.org/10.1134/S0020168517080040
Y. Shi, F. Zhang, J. Xu, K. Zhou, C. Chen, J. Cheng, P. Li. Upconversion fluorescence enhancement of NaYF4 : Yb/Re nanoparticles by coupling with SiO2 opal photonic crystals. J. Mater. Sci. 54, 8461 (2019).
https://doi.org/10.1007/s10853-019-03492-x
X. Zhang, H. Zhang, Y.-J. Li. Enhancement of the upconversion luminescence of ZnO : Yb3+/Er3+ by photonic crystals. Optoelectron. Lett. 15, 195 (2019).
https://doi.org/10.1007/s11801-019-8150-1
V.N. Moiseienko, V.S. Gorelik, B.A. Sal, O.V. Ohiienko, D.O. Golochalov. Luminescent properties of nanocomposite-Bi12SiO20, filled with C6H9EuO6 ×H2O. J. Phys. Conf. Ser. 1348, 012096 (2019).
https://doi.org/10.1088/1742-6596/1348/1/012096
Y. Wang, W. Xu, S. Cui, S. Xu, Z. Yin, H. Song, P. Zhou, X. Liu, L. Xu, H. Cui. Highly improved upconversion luminescence in NaGd(WO4)2 : Yb3+/Tm3+ inverse opal photonic crystals. Nanoscale. 7, 1363 (2015).
https://doi.org/10.1039/C4NR05688D
Z. Chai, Z. Yang, A. Huang, C. Yu, J. Qiu, Z. Song. Preparation and upconversion luminescence modification of YbPO4 : Er3+ inverse opal heterostructure. J. Rare Earths. 35, 1180 (2017).
https://doi.org/10.1016/j.jre.2017.06.009
Y. Ren, Z. Yang, M. Li, J. Qiu, Z. Song, D. Zhou, B. Liu. Upconversion luminescence modification induced near infrared luminescence enhancement of Bi2Ti2O7 : Yb3+, Er3+ inverse opals. J. Lumin. 208, 150 (2019).
https://doi.org/10.1016/j.jlumin.2018.12.037
W. St¨ober, A. Fink, E. Bohn. Controlled growth of monodisperse silica spheres in the micron size range. J. Colloid Interface Sci. 26, 62 (1968).
https://doi.org/10.1016/0021-9797(68)90272-5
A.V. Baryshev, A.A. Kaplyanskii, V.A. Kosobukin, K.B. Samusev, D.E. Usvyat, M.F. Limonov. Photonic band-gap structure: From spectroscopy towards visualization. Phys. Rev. B - Condens. Matter Mater. Phys. 70, 113104 (2004).
https://doi.org/10.1103/PhysRevB.70.113104
A.S. Sinitskii, A.V. Knot'ko, Y.D. Tretyakov. Silica photonic crystals: synthesis and optical properties. Solid State Ionics. 172, 477 (2004).
https://doi.org/10.1016/j.ssi.2004.01.048
V.M. Masalov, N.S. Sukhinina, G.A. Emel'chenko. Colloidal particles of silicon dioxide for the formation of opallike structures, Phys. Solid State. 53, 1135 (2011).
https://doi.org/10.1134/S1063783411060229
E.N. Samarov, A.D. Mokrushin, V.M. Masalov, G.E. Abrosimova, G.A. Emel'chenko. Structural modification of synthetic opals during thermal treatment. Phys. Solid State. 48, 1280 (2006).
https://doi.org/10.1134/S1063783406070109
O. V. Ohiienko, V.N. Moiseyenko, T.V. Shvets. Luminescent properties of europium (III) acetate monohydrate in synthetic opal pores. Mol. Cryst. Liq. Cryst. 701, 72 (2020).
https://doi.org/10.1080/15421406.2020.1732564
A. Yevchik, V. Moiseyenko, M. Dergachov. The influence of structural defects on the optical properties of synthetic opals. Ukr. J. Phys. Opt. 16, 24 (2015).
https://doi.org/10.3116/16091833/16/1/24/2015
K. Binnemans. Interpretation of europium(III) spectra. Coord. Chem. Rev. 295, 1 (2015).
https://doi.org/10.1016/j.ccr.2015.02.015
S. Ganapathy, V.P. Chacko, R.G. Bryant, M.C. Etters. Carbon CP-MASS NMR and X-ray crystal structure of paramagnetic lanthanide acetates. J. Am. Chem. Soc. 108, 3159 (1986).
https://doi.org/10.1021/ja00272a001
S.G. Torres, I. Pantenburg, G. Meyer. Direct oxidation of europium metal with acetic acid: Anhydrous europium(III) acetate, Eu(OAc)3, its sesquihydrate, Eu(OAc)3(H2O)1.5, and the "hydrogendiacetate", [Eu(H(OAc)2)3](H2O). Zeitschrift Fur Anorg. Und Allg. Chemie. 632, 1989 (2006).
https://doi.org/10.1002/zaac.200600154
M.A. Kaliteevskii, V.V. Nikolaev, R.A. Abram. Eigenstate statistics and optical properties of one-dimensional disordered photonic crystal. Phys. Solid State. 47, 1948 (2005).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.