Fabrication and Evaluation of Optical Characteristics of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics

Authors

  • M.H. Dwech University of Kerbala, College of Science, Department of Physics
  • M.A. Habeeb University of Babylon, College of Education for Pure Sciences, Department of Physics
  • A.H. Mohammed University of Babylon, College of Education for Pure Sciences, Department of Physics

DOI:

https://doi.org/10.15407/ujpe67.10.757

Keywords:

nanocomposite, optical properties, polyvinyl alcohol, MnO2–ZrO2 nanoparticles

Abstract

We study the impact of (MnO2–ZrO2) nanoparticles on optical properties of (PVA) polymer. Several samples were produced with different weight ratios of (MnO2–ZrO2) nanoparticles. To prepare the selected samples, the casting method is used. To record the absorption spectrum, wavelengths of 200–1100 nm are applied. We have determined the absorption coefficient, energy gap for indirect transitions (forbidden and allowed), optical constants (such as the dielectric constant with its imaginary and real parts, refractive index, and attenuation coefficient), and optical conductivity. The results indicate that there is a proportional relationship between the optical constants and the concentration of (MnO2–ZrO2) nanoparticles, which means that an increase of the concentration of (MnO2–ZrO2) nanoparticles leads to an increase of the optical constants, while the transmission decreases. Additionally, the optical energy gap decreases from 4.83 eV to 3.4 eV and from 4.65 eV to 3.28 eV with increasing the concentration of (MnO2–ZrO2) nanoparticles for allowed and forbidden indirect transitions, respectively. These results can be considered as key ones for the use of (PVA-MnO2–ZrO2) nanocomposites in various fields such as optoelectronics and photonics.

References

H.N. Obaid, H. Najm, M.A. Habeeb, F.L. Rashid, A. Hashim. Thermal energy storage by nanofluids. J. Engin. Appl. Sci. 8, 5 (2013).

I.D. Bower. Introduction to Polymer Physics (Cambridge university Press, 2002).

https://doi.org/10.1017/CBO9780511801280

M.O.W. Richardson. Polymer Engineering Composites (Elsevier Science & Technology, 1977).

M.A. Habeeb, W.S. Mahdi. Characterization of (CMCPVP-Fe2O3) nanocomposites for gamma shielding application. IJETER 7, 9 (2019).

https://doi.org/10.30534/ijeter/2019/06792019

A. Gautam, S. Ram. Preparation and thermomechanical properties of Ag-PVA nanocomposite films. Mater. Chem. Phys. 119, 1 (2010).

https://doi.org/10.1016/j.matchemphys.2009.08.050

S.M. Mahdi, M.A. Habeeb. Evaluation of the influence of SrTiO3 and CoO nanofillers on the structural and electrical polymer blend characteristics for electronic devices. Digest J. Nanomater. Biostruct. 17, 3 (2022).

https://doi.org/10.15251/DJNB.2022.173.941

J. Marijana, S. Igor, Z. Zoran, M. Stjepan. Effect of polyvinyl pyrrolidone on the formation AgBr grains in gelatine media. Croatica Chemica Acta 85, 3, (2012).

https://doi.org/10.5562/cca1919

L. Yang, S.T.D. Chueng, Y. Li, M. Patel, C. Rathnam, G. Dey, L. Wang, L. Cai, K-B Lee. A biodegradable hybrid inorganic nanoscaffold for advanced stem cell therapy. Nat. Commun. 9, 3147 (2018).

https://doi.org/10.1038/s41467-018-05599-2

B.S. Mudigoudra, S.P. Masti, R.B. Chougale. Thermal behavior of (poly-vinyl alcohol)/(polyvinyl pyrrolidone)/chitosan ternary polymer blend films. Res. J. Recent Sci. 1, (2012).

D.P. Dinega, M.G. Bawendi. Influence of iron oleate complex structure on iron oxide nanoparticle formation. J. Appl. Physiology 85, (1999).

N. Hayder, Noor, Majeed Habeeb, A. Hashim. structural, optical and dielectric properties of (PS-In2O3/ZnCoFe2O4) nanocomposites. Egyptian J. Chem. 62, (2) (2019).

https://doi.org/10.21608/ejchem.2019.14646.1887

Q.M. Jebur, Qayssar, A. Hashim, M. Habeeb. Structural, AC electrical and optical properties of (Polyvinyl alcohol-polyethylene oxide-aluminum oxide) nanocomposites for piezoelectric devices. Egyptian J. Chem. 62, (2) (2019).

https://doi.org/10.21608/ejchem.2019.14847.1900

A.N. Donald. Semiconductor Physics and Devices (Irwin, 1992).

C. Kittel. Introduction to Solid State Physics (Willy, 1981).

M.H. Dwech, K.A. Aadim, G.H. Jihad. Effect of laser fluencies on solar cell characterization of (CdO)1−x : Sbx/PSi thin films by laser induce plasma. IOP Conf. Ser.: Mater. Sci. Eng. 928, 072153 (2020).

https://doi.org/10.1088/1757-899X/928/7/072153

A. Hashim, M.A. Habeeb, Q.M. Jebur. Structural, dielectric and optical properties for (Polyvinyl alcohol-polyethylene oxide manganese oxide) nanocomposites. Egyptian J. Chem. 63 (2020).

https://doi.org/10.21608/ejchem.2019.14849.1901

Q.M. Jebur, A. Hashim, M.A. Habeeb. Fabrication, structural and optical properties for (Polyvinyl alcohol-polyethylene oxide iron oxide) nanocomposites. Egyptian J. Chem. 63, 2 (2020).

J.B. Bhaiswar, M. Salunkhe, S.P. Dongre, B.T. Kumbhare. Comparative study on thermal stability and optical properties of PANI/Cds and PANI/Pbs nanocomposite. IOSR J. Appl. Phys., Intern. Conf. on Advances in Engin.& Technology 80, (2014).

M.A. Habeeb, R.S.A. Hamza. Synthesis of (polymer blend-MgO) nanocomposites and studying electrical properties for piezoelectric application. Indonesian J. Electr. Engin. Inform. 6, 4 (2018).

https://doi.org/10.11591/ijeei.v6i3.511

M.A. Habeeb, R.S. Abdul Hamza. Novel of (biopolymer blend-MgO) nanocomposites: Fabrication and characterization for humidity sensors. J. Bionanoscience 12, 3 (2018).

https://doi.org/10.1166/jbns.2018.1535

S.K. Shahenoor. Basha, G.S. Sundari, K.V. Kumar. Optical, thermal and electrical studies of PVP based solid polymer electrolyte for solid state battery applications. Intern. J. Chem. Tech. Research 9, 2 (2016).

Na.K. Abbas, M. Ali Habeeb, A.J. Kadham Algidsawi. Preparation of chloro penta amine cobalt (III) chloride and study of its influence on the structural and some optical properties of polyvinyl acetate. Intern. J. Polymer Sci. 2015 (2015).

https://doi.org/10.1155/2015/926789

M.A. Habeeb, W.K. Kadhim. Study the optical properties of (PVA-PVAC-Ti) nanocomposites. J. Engin. Appl. Sci. 9, 4 (2014).

S.K. Shahenoor. Basha, G.S. Sundari, K.V. Kumar. Optical, thermal and electrical studies of PVP based solid polymer electrolyte for solid state battery applications. Intern. J. Chem. Tech. Research 9, 2 (2016).

M.A. Habeeb. Effect of rate of deposition on the optical parameters of GaAs films. Europ. Jo. Sci. Res. 57, 3 (2011).

V.T. Yovcheva, S. Sainov, V. Dragostinova, S. Stavrev. Optical properties of PVA films with diamond and titania nanoparticles. J. Phys. Conf. Ser. 253, 1 (2010).

https://doi.org/10.1088/1742-6596/253/1/012027

A.H. Hadi, M.A. Habeeb. Effect of nanoparticles on the optical properties of (PVA-PVP) blends. J. Mechan. Engin. Research an Develop. 44, 3 (2021).

M.A. Habeeb, A. Hashim, N. Hayder. Structural and optical properties of novel (PS-Cr2O3/ZnCoFe2O4) nanocomposites for UV and microwave shielding. Egyptian J. Chem. 63 (2020).

https://doi.org/10.21608/ejchem.2019.12439.1774

M.A. Habeeb. Dielectric and optical properties of (PVAcPEG-Ber) biocomposites. J. Engin. Appl. Sci. 9, 4 (2014).

K. Sivaiah, B. Hemalatha Rudramadevi, S. Buddhudu, G. Bhaskar Kumara, Varadarajulu. Structural, thermal and optical properties of Cu2+ and Co2+: PVP polymer films. Indian J. Pure and Appl. Phys. 48, 9 (2010).

Downloads

Published

2023-01-04

How to Cite

Dwech, M., Habeeb, M., & Mohammed, A. (2023). Fabrication and Evaluation of Optical Characteristics of (PVA-MnO2–ZrO2) Nanocomposites for Nanodevices in Optics and Photonics. Ukrainian Journal of Physics, 67(10), 757. https://doi.org/10.15407/ujpe67.10.757

Issue

Section

Structure of materials