Specific Features of Motion of Cations and Anions in Electrolyte Solutions

Authors

  • L.A. Bulavin Taras Shevchenko National University of Kyiv
  • I.V. Zhyganiuk I.I. Mechnikov Odessa National University
  • M.P. Malomuzh I.I. Mechnikov Odessa National University
  • K.M. Pankratov Odessa National Polytechnic University

DOI:

https://doi.org/10.15407/ujpe56.9.893

Keywords:

-

Abstract

The nature of mobility of ions and water molecules in dilute aqueous solutions of electrolytes (at most fifteen water molecules per ion) is investigated. It is shown that the behavior of the mobility coefficients of water molecules and ions, as well as the self-diffusion coefficients of water molecules, are determined by the radii of their hard shells rather than by the effect of the hydrogen bond network. It is established that the influence of hydration effects on the density of the system and the self-diffusion coefficients of water molecules does not exceed several per cent. Based on microscopic concepts, it is shown that the different
behaviors of a K+ cation and an F anion with equal rigid radii are in good agreement with specific features of the intermolecular interaction described by the generalized Stillinger–David potential [1, 2].

References

F.H. Stillinger and C.W. David, J. Chem. Phys. 69, 1473 (1978).

https://doi.org/10.1063/1.436773

I.V. Zhyganiuk, Ukr. Fiz. Zh. 56, 225 (2011).

J.M.G. Barthel, H. Krienke, and W. Kunz, Physical Chemistry of Electrolyte Solutions (Steinkopff, Darmstadt, 1998).

L.A. Bulavin, T.V. Karmazina, V.V. Klepko, and V.I. Slisenko, Neutron Spectroscopy of Condensed Media (Akademperiodyka, Kyiv, 2005) (in Ukrainian).

D. McCall and D. Douglass, J. Phys. Chem. 69, 2001 (1965).

https://doi.org/10.1021/j100890a034

G.I. Safford, P.S. Leung, A.W. Naumann, and P.C. Chaffer, J. Chem. Phys. 50, 4444 (1969).

https://doi.org/10.1063/1.1670917

P.S. Leung and G.I. Safford, J. Phys. Chem. 74, 3696 (1970).

https://doi.org/10.1021/j100715a003

L.A. Bulavin, A.A. Vasylkevych, and A.K. Dorosh, Ukr. Fiz. Zh. 31, 1703 (1986).

L.A. Bulavin, G.M. Verbins'ka, L.O. Komarova, and V.V. Krotenko, Ukr. Fiz. Zh. 50, 939 (2005).

L.A. Bulavin, M.P. Malomuzh, and K.M. Pankratov, Dopov. Nats. Akad. Nauk Ukr. No. 8, 70 (2009).

A. Lyubartsev and A. Laaksonen, J. Phys. Chem. 100, 16410 (1996).

https://doi.org/10.1021/jp961317h

A. Lyubartsev, K. Laasonen, and A. Laaksonen, J. Chem. Phys. 114, 3120 (2001).

https://doi.org/10.1063/1.1342815

A.V. Egorov, A.V. Komolkin, V.I. Chizhik, P.V. Yushmanov, A.P. Lyubartsev, and A. Laaksonen, J. Phys. Chem. B 107, 3234 (2003).

https://doi.org/10.1021/jp026677l

О.Ya. Samoilov, Structure of Water Electrolyte Solutions and Hydration of Ions (AN SSSR, Moscow, 1957) (in Russian).

I.R. Yukhnovskii and I.I. Kurylyak, Electrolytes (Naukova Dumka, Kyiv, 1988) (in Russian).

M.F. Golovko, in Binary Distribution Functions for Systems of Interacting Charged Particles (Evrosvit, Lviv, 2010) (in Ukrainian).

P. Blanckenhagen, Ber. Bunsenges. Phys. Chem. 76, 891 (1972).

T.V. Lokotosh, N.P. Malomuzh, and K.N. Pankratov, J. Chem. Eng. Data 55, 2021 (2010).

https://doi.org/10.1021/je9009706

Y. Kataoka, H. Hamada, S. Nose, and T.J. Yamamoto, Chem. Phys. 77, 5699 (1982).

https://doi.org/10.1063/1.443777

T.V. Lokotosh, N.P. Malomuzh, and V.L. Zakharchenko, Zh. Strukt. Khim. 44, 1104 (2003).

https://doi.org/10.1023/B:JORY.0000034807.32927.58

L.A. Bulavin, A.I. Fisenko, and N.P. Malomuzh, Chem. Phys. Lett. 453, 183 (2008).

https://doi.org/10.1016/j.cplett.2008.01.028

L.A. Bulavin, T.V. Lokotosh, and N.P. Malomuzh, J. Mol. Liq. 137, 1 (2008).

https://doi.org/10.1016/j.molliq.2007.05.003

I.V. Zhyganiuk, Dopov. Nats. Akad. Nauk Ukr. No. 8, 77 (2009).

E.R. Nightingale, J. Phys. Chem. 63, 1381 (1959).

https://doi.org/10.1021/j150579a011

J.C. Koneshan, J.C. Rasaiah, R.M. Lynden-Bell, and S.H. Lee, J. Phys. Chem. B 102, 4193 (1998).

https://doi.org/10.1021/jp980642x

J.E. House, Inorganic Chemistry (Academic Press, San Diego, 2008).

S.H. Lee and J.C. Rasaiah, J. Chem. Phys. 82, 1239 (1985).

I.D. Zaitsev and G.G. Zaitsev, Physical-Chemical Properties of Binary and Multicomponent Inorganic Substances (Khimiya, Moscow, 1988) (in Russian).

V.Ya. Antonchenko, A.S. Davydov, and V.V. Il'in, Fundamentals of the Physics of Water (Naukova Dumka, Kiev, 1991) (in Russian).

D. Eisenberg and W. Kauzmann, The Structure and Properties of Water (Oxford University Press, New York, 1969).

M.N. Buslaeva and O.Y. Samoylov, in The Chemical Physics of Solvation. Part A, ed. by R. Dogonadze et al. (Elsevier, Amsterdam, 1985).

I.V. Zhyganiuk, Dopov. Nats. Akad. Nauk Ukr. No. 11, 72 (2009).

Yu.V. Ergin, O.Ya. Koop, and A.M. Khrapko, Zh. Fiz. Khim. 54, 392 (1980).

E. Clementi and H. Popkie, J. Chem. Phys. 57, 1077 (1972).

https://doi.org/10.1063/1.1678361

H. Kistenmacher, H. Popkie, and E. Clementi, J. Chem. Phys. 61, 799 (1974).

https://doi.org/10.1063/1.1682019

J. Frenkel, Kinetic Theory of Liquids (Dover, New York, 1955).

L.A. Bulavin, Doct. Thesis (Kiev, 1991) (in Russian).

Published

2022-02-08

How to Cite

Bulavin Л., Zhyganiuk І., Malomuzh М., & Pankratov К. (2022). Specific Features of Motion of Cations and Anions in Electrolyte Solutions. Ukrainian Journal of Physics, 56(9), 893. https://doi.org/10.15407/ujpe56.9.893

Issue

Section

Soft matter

Most read articles by the same author(s)

<< < 1 2