Spin-1/2 Asymmetric Diamond Ising–Heisenberg Chain

Authors

  • B.M. Lisnii Institute for Condensed Matter Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.11.1237

Keywords:

-

Abstract

The ground state and the thermodynamics of a spin-1/2 asymmetric diamond Ising–Heisenberg chain are considered. For the XYZ anisotropic Heisenberg interaction, the exact calculations of the free energy, entropy, heat capacity, magnetization, and magnetic susceptibility are performed using the method of decoration-iteration transformation. In the case of antiferromagnetic interactions (Ising and XYZ anisotropic Heisenberg ones), the ground state, magnetization process, temperature dependence of the magnetization, magnetic susceptibility, and heat capacity are investigated. The influence of
geometric frustration and quantum fluctuations on these characteristics is studied.

References

I. Syozi, Prog. Theor. Phys. 6, 341 (1951).

M. Fisher, Phys. Rev. 113, 969 (1959).

https://doi.org/10.1103/PhysRev.113.969

T. Kaneyoshi, Prog. Theor. Phys. 97, 407 (1997).

https://doi.org/10.1143/PTP.97.407

V.R. Ohanyan and N.S. Ananikian, Phys. Lett. A 307, 76 (2003).

https://doi.org/10.1016/S0375-9601(02)01224-0

J.S. Valverde, O. Rojas, and S.M. de Souza, Physica A 387, 1947 (2008).

https://doi.org/10.1016/j.physa.2007.11.050

J. Strečka and M. Jaščur, J. Phys.: Cond. Matter 15, 4519 (2003).

https://doi.org/10.1088/0953-8984/15/26/302

J. Strečka, M. Jaščur, M. Hagiwara, K. Minami, Y. Narumi, and K. Kindo, Phys. Rev. B 72, 024459 (2005).

https://doi.org/10.1103/PhysRevB.72.024459

B.M. Lisnii, Ukr. Fiz. Zh. 53, 712 (2008).

L. Čanová, J. Strečka, M. Jaščur, J. Phys.: Cond. Matter 18, 4967 (2006).

https://doi.org/10.1088/0953-8984/18/20/020

L. Čanová, J. Strečka, T. Lučivjanský, Condens. Matter Phys. 12, 353 (2009).

https://doi.org/10.5488/CMP.12.3.353

J.S. Valverde, O. Rojas, and S.M. de Souza, J. Phys.: Condens. Matter 20, 345208 (2008).

https://doi.org/10.1088/0953-8984/20/34/345208

V. Ohanyan, Condens. Matter Phys. 12, 343 (2009).

https://doi.org/10.5488/CMP.12.3.343

D. Antonosyan, S. Bellucci, and V. Ohanyan, Phys. Rev. B 79, 014432 (2009).

https://doi.org/10.1103/PhysRevB.79.014432

M.S.S. Pereira, F.A.B.F. de Moura, and M.L. Lyra, Phys. Rev. B 77, 024402 (2008).

https://doi.org/10.1103/PhysRevB.77.024402

B.M. Lisnii, Fiz. Nizk. Temp. 37, 380 (2011).

https://doi.org/10.1063/1.3592221

H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Phys. Rev. Lett. 94, 227201 (2005).

https://doi.org/10.1103/PhysRevLett.94.227201

H. Kikuchi, Y. Fujii, M. Chiba, S. Mitsudo, T. Idehara, T. Tonegawa, K. Okamoto, T. Sakai, T. Kuwai, and H. Ohta, Prog. Theor. Phys. Suppl. 159, 1 (2005).

https://doi.org/10.1143/PTPS.159.1

R.J. Baxter, Exactly Solved Models in Statistical Mechanics (Academic Press, London, 1982).

S. Yamamoto, Phys. Rev. B 59, 1024 (1999).

https://doi.org/10.1103/PhysRevB.59.1024

Published

2022-02-03

How to Cite

Lisnii Б. (2022). Spin-1/2 Asymmetric Diamond Ising–Heisenberg Chain. Ukrainian Journal of Physics, 56(11), 1237. https://doi.org/10.15407/ujpe56.11.1237

Issue

Section

General problems of theoretical physics