On Some Helium Metallization Parameters

Authors

  • V.T. Shvets Odessa State Academy of Refrigeration
  • S.V. Kozyts’kyi Odessa State Academy of Refrigeration
  • T.V. Shvets Odessa State Academy of Refrigeration

DOI:

https://doi.org/10.15407/ujpe57.1.35

Keywords:

-

Abstract

A density minimum of 5 g/cm3, at which the insulator–metal phase transition in helium can take place, has been calculated. The corresponding temperature of this transition of about 9000 K has been estimated. For this purpose, the effective pair ion-to-ion interaction and the electrical resistivity in liquid helium in a vicinity of the transition point into the metallic state are studied in the framework of a nearly free electron model. As a small parameter of the theory, the ratio between, on the one hand, the energy of interaction between conduction electrons and a singly ionized helium atom and, on the other hand, the Fermi
energy of electrons was used. The interaction between electrons is taken into account in the framework of the diffraction model of metal, i.e. considering the screening of the electron-to-ion interaction. The exchange interaction and correlations between conduction electrons are taken into account in the local field approximation.

References

E. Wigner and H.B. Huntington, J. Chem. Phys. 3, 764 (1935).

https://doi.org/10.1063/1.1749590

P.S. Hawke, T.J. Burgess, D.E. Duerre, J.G. Huebel, R.N. Keeler, H. Klapper, and W.C. Wallace, Phys. Rev. Lett. 41, 994 (1978).

https://doi.org/10.1103/PhysRevLett.41.994

S.T. Weir, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 76, 1860 (1996).

https://doi.org/10.1103/PhysRevLett.76.1860

M. Bastea, A.C. Mitchell, and W.J. Nellis, Phys. Rev. Lett. 86, 3108 (2001).

https://doi.org/10.1103/PhysRevLett.86.3108

K. Shimizu et al., Nature (London) 393, 767 (1998).

https://doi.org/10.1038/31656

W.A. Harrison, Pseudopotentials in the Theory of Metals (Benjamin, New York, 1966).

W.A. Harrison, Solid State Theory (Dover, New York, 1980).

I.O. Vakarchuk, Quantum Mechanics (Ivan Franko Lviv National Univ., Lviv, 2007) (in Ukrainian).

V.T. Shvets, Green's Function Method in the Theory of Metals (Latstar, Odessa, 2002) (in Ukrainian).

V.T. Shvets, Physics of Disordered Metals (Mayak, Odessa, 2007) (in Ukrainian).

V.T. Shvets, Fiz. Met. Metalloved. 103, 346 (2007).

V.T. Shvets, Zh. Eksp. Teor. Fiz. 131, 743 (2007).

V.T. Shvets and A.S. Vlasenko, Acta Phys. Pol. A 114, 851 (2008).

https://doi.org/10.12693/APhysPolA.114.851

O.I. Ostrovskii, V.A. Grigoryan, and A.F. Vishkarev, Properties of Metal Melts (Metallurgiya, Moscow, 1988) (in Russian).

E.G. Brovman and Yu.M. Kagan, Usp. Fiz. Nauk 112, 369 (1974).

https://doi.org/10.3367/UFNr.0112.197403a.0369

D.J.M. Geldart and S.H. Vosko, Can. J. Phys. 44, 2137 (1966).

https://doi.org/10.1139/p66-174

S.D. Kaim, N.P. Kovalenko, and E V. Vasiliu, J. Phys. Studies 1, 589 (1997).

https://doi.org/10.30970/jps.01.589

B. Springer, Phys. Rev. 136, 115 (1964).

https://doi.org/10.1103/PhysRev.136.A115

B. Springer, Phys. Rev. 154, 614 (1967).

https://doi.org/10.1103/PhysRev.154.614

J. Rubio, J. Phys. C 2, 288 (1969).

https://doi.org/10.1088/0022-3719/2/2/311

T. Neal, Phys. Rev. 169, 508 (1968).

https://doi.org/10.1103/PhysRev.169.508

T. Neal, Phys. Fluids 13, 249 (1970).

https://doi.org/10.1063/1.1692917

N.W. Ashcroft and W. Schaich, Phys. Rev. B 1, 1370 (1970).

https://doi.org/10.1103/PhysRevB.1.1370

N.W. Ashcroft and W. Schaich, Phys. Rev. B 3, 1511 (1971).

https://doi.org/10.1103/PhysRevB.3.1511

A. Bringer and D. Wagner, Z. Phys. 241, 295 (1971).

https://doi.org/10.1007/BF01395426

J. Popielawski, Physica 78, 97 (1974).

https://doi.org/10.1016/0031-8914(74)90312-7

J. Gorecki and J. Popielawski, J. Phys. F 13, 2107 (1983).

https://doi.org/10.1088/0305-4608/13/10/020

V.T. Shvets, Fiz. Met. Metalloved. 89, 5 (2000).

D.J. Stevenson, Phys. Rev. B 12, 3999 (1975).

https://doi.org/10.1103/PhysRevB.12.3999

W.H. Shih and D. Stroud, Phys. Rev. B 31, 3715 (1985).

https://doi.org/10.1103/PhysRevB.31.3715

I.R. Yukhnovskii and M.F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1987) (in Russian).

V.T. Shvets, S.V. Savenko, and Ye.K. Malynovski, Condens. Matter Phys. 9, 127 (2006).

https://doi.org/10.5488/CMP.9.1.127

V.S. Filinov, V.T. Fortov, M. Bonitz, and P.R. Levashov, Pis'ma Zh. Eksp. Teor. Fiz. 74, 422 (2001).

https://doi.org/10.1134/1.1427127

V.T. Shvets, A.G. Vlasenko, and A.D. Bukhanenko, Pis'ma Zh. Eksp. Teor. Fiz. 86, 625 (2007).

Published

2012-01-30

How to Cite

Shvets В., Kozyts’kyi С., & Shvets Т. (2012). On Some Helium Metallization Parameters. Ukrainian Journal of Physics, 57(1), 35. https://doi.org/10.15407/ujpe57.1.35

Issue

Section

Soft matter