The Quantum Features of Correlated Photons with the Effect of Phase Fluctuation

Authors

  • A.G. Kumela Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University
  • A.B. Gemta Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University
  • A.K. Hordofa Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University
  • T.A. Desta Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University
  • M. Dangish Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University
  • H.D. Mekonnen Department of Applied Physics, School of Applied Sciences, Adama Science and Technology University

DOI:

https://doi.org/10.15407/ujpe68.2.81

Keywords:

quantum features, correlated photons, nondegenerate three-level laser, entanglement

Abstract

We theoretically investigate the effect of phase fluctuations on correlated photons resulting from nondegenerate three-level atoms under the cavity radiation. The photon statistics, photon number correlation, and entanglement properties of the system have been calculated employing the dynamical equation of the system. It is shown that, for the sub-Poissonian photon statistics, the degree of correlation increases with the atomic pumping rate, and the entanglement varies with phase fluctuations, rather than with the atomic pumping rate. The proposed system is well suitable for the quantum information processing.

References

B. Hensen, H. Bernien, A.E. Dr'eau, A. Reiserer, N. Kalb, M.S. Blok, J. Ruitenberg, R.F. Vermeulen, R.N. Schouten, C. Abell'an et al. Loophole-free bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682 (2015).

https://doi.org/10.1038/nature15759

H.-A. Bachor, T.C. Ralph. A Guide to Experiments in Quantum Optics (John Wiley & Sons, 2019).

https://doi.org/10.1002/9783527695805

F. Priolo, T. Gregorkiewicz, M. Galli, T.F. Krauss. Silicon nanostructures for photonics and photovoltaics. Nature Nanotechnology 9 (1), 19 (2014).

https://doi.org/10.1038/nnano.2013.271

C. Xiong, C. Monat, M.J. Collins, A.S. Clark, C. Grillet, G.D. Marshall, M. Steel, J. Li, L. O'Faolain, T.F. Krauss et al. Improved car and noise analysis for photon-pair generation in an ultra-compact silicon slow-light photonic crystal waveguide. In: 2011 2nd International Conference on Photonics (2011), pp. 1-5.

https://doi.org/10.1109/ICP.2011.6106815

I. Krasnokutska. Photonic Circuits Engineering in Lithium Niobate on Insulator. Ph.D. thesis (RMIT University, 2019).

https://doi.org/10.1364/OE.26.000897

C. Gashu, E. Mosisa, T. Abebe. Entanglement quantification of correlated photons generated by three-level laser with parametric amplifier and coupled to a two-mode vacuum reservoir. Advances in Math. Phys. 2020 (2020).

https://doi.org/10.1155/2020/9027480

D. Ayehu, A. Chane. The effect of superposition on the quantum features of the cavity radiation of a three-level laser. Ukr. J. Phys. 66 (9), 761 (2021).

https://doi.org/10.15407/ujpe66.9.761

Y. Guo, L. Yan, W. Pan, B. Luo, K. Wen, Z. Guo, X. Luo. Electromagnetically induced transparency (eit)-like transmission in side-coupled complementary split-ring resonators. Optics Express 20 (22), 24348 (2012).

https://doi.org/10.1364/OE.20.024348

A. Mysyrowicz, R. Danylo, A. Houard, V. Tikhonchuk, X. Zhang, Z. Fan, Q. Liang, S. Zhuang, L. Yuan, Y. Liu. Lasing without population inversion in n 2+. APL Photonics 4 (11), 110807 (2019).

https://doi.org/10.1063/1.5116898

M. Sahrai, S. Asadpour, R. Sadighi-Bonabi. Optical bistability via quantum interference from incoherent pumping and spontaneous emission. J. Luminescence 131 (11), 2395 (2011).

https://doi.org/10.1016/j.jlumin.2011.05.059

F. Dell'Anno, S. De Siena, F. Illuminati, Multiphoton quantum optics and quantum state engineering. Phys. Rep. 428 (2-3), 53 (2006).

https://doi.org/10.1016/j.physrep.2006.01.004

A.G. Kumela, A.B. Gemta, A.K. Hordofa, T.A. Desta, M. Dangish, H.D. Mekonnen. Optoplasmonic biosensor for lung cancer telediagnosis: Design and simulation analysis. Sensors International 4, 100232 (2023).

https://doi.org/10.1016/j.sintl.2023.100232

S. Tesfa. Role of phase fluctuation and dephasing in the enhancing continuous variable entanglement of a two-photon coherent beat laser. Chinese Phys. B 21 (1), 014204 (2012).

https://doi.org/10.1088/1674-1056/21/1/014204

D. Bruß. Characterizing entanglement. J. Math. Phys. 43 (9), 4237 (2002).

https://doi.org/10.1063/1.1494474

C. Spengler, M. Huber, S. Brierley, T. Adaktylos, B.C. Hiesmayr. Entanglement detection via mutually unbiased bases. Phys. Rev. A 86 (2), 022311 (2012).

https://doi.org/10.1103/PhysRevA.86.022311

A.G. Kumela, A.B. Gemta, T.A. Desta, A. Kebede. Noble classical and quantum approach to model the optical properties of metallic nanoparticles to enhance the sensitivity of optoplasmonic sensors. RSC advances 12 (25), 16203 (2022).

https://doi.org/10.1039/D2RA00824F

K. Audenaert, M.B. Plenio, J. Eisert. Entanglement cost under positive-partial-transpose-preserving operations. Phys. Revi. Lett. 90 (2), 027901 (2003).

https://doi.org/10.1103/PhysRevLett.90.027901

F. Martinet, M.K. Olsen. Finite size effects and equilibration in bose-hubbard chains with central well dephasing. Europ. Phys. J. D 71, 1 (2017).

https://doi.org/10.1140/epjd/e2016-70663-9

S. Tesfa, S. Tesfa. Quantum features of light. Quantum Optical Processes: From Basics to Applications (2020), p. 293.

https://doi.org/10.1007/978-3-030-62348-7_7

F. Sun, D. Mao, Y. Dai, Z. Ficek, Q. He, Q. Gong. Phase control of entanglement and quantum steering in a three-mode optomechanical system. New J. Phys. 19 (12), 123039 (2017).

https://doi.org/10.1088/1367-2630/aa9c9a

S. Qamar, S. Qamar, M.S. Zubairy. Effect of phase fluctuations on entanglement generation in a correlated emission laser with injected coherence. Optics Commun. 283 (5), 781 (2010).

https://doi.org/10.1016/j.optcom.2009.10.045

J.P. Poizat, M. Collett, D. Walls. Nondegenerate two-mode squeezing and quantum-nondemolition measurements using three-level atoms in a cavity. Physi. Rev. A 45 (7), 5171 (1992).

https://doi.org/10.1103/PhysRevA.45.5171

V. Koverda, V. Skokov. The origin of 1/f fluctuations and scale transformations of time series at nonequilibrium phase transitions. Phys. A: Stat. Mech. Appl. 346 (3-4), 203 (2005).

https://doi.org/10.1016/j.physa.2004.07.042

M. Alizadeh, G. Shaker, J.C.M. De Almeida, P.P. Morita, S. Safavi-Naeini. Remote monitoring of human vital signs using mm-wave fmcw radar. IEEE Access 7, 54958 (2019).

https://doi.org/10.1109/ACCESS.2019.2912956

D. Ayehu. Squeezing and entanglement properties of the cavity light with decoherence in a cascade three-level laser. J. Russian Laser Research 42, 136 (2021).

https://doi.org/10.1007/s10946-021-09942-9

M. Anzola, F. Di Maiolo, A. Painelli. Optical spectra of molecular aggregates and crystals: Testing approximation schemes. Phys. Chem. Chem. Phys. 21 (36), 19816 (2019).

https://doi.org/10.1039/C9CP03122G

A. Mahmoud, M. Ahmed. Effect of asymmetric intermodal gain suppression on dynamics of multimode semiconductor lasers. Opt. Commun. 462, 125365 (2020).

https://doi.org/10.1016/j.optcom.2020.125365

A. Morillo-Candas, C. Drag, J.-P. Booth, T. Dias, V. Guerra, O. Guaitella. Oxygen atom kinetics in co2 plasmas ignited in a dc glow discharge. Plasma Sources Sci. Techn. 28 (7), 075010 (2019).

https://doi.org/10.1088/1361-6595/ab2b84

S. Tesfa. Role of dephasing in modifying the evolution of the cavity radiation of a coherent beat laser. Phys. Revi. A 79 (3), 033810 (2009).

https://doi.org/10.1103/PhysRevA.79.033810

S. Tesfa. Dependence of the evolution of the cavity radiation of a coherently pumped correlated emission laser on dephasing and phase fluctuation. Phys. Rev. A 83 (2), 023809 (2011).

https://doi.org/10.1103/PhysRevA.83.023809

N. Korolkova, G. Leuchs, R. Loudon, T.C. Ralph, C. Silberhorn. Polarization squeezing and continuousvariable polarization entanglement. Phys. Revi. A 65 (5), 052306 (2002).

https://doi.org/10.1103/PhysRevA.65.052306

M. Servin, J.A. Quiroga, J.L. Marroquin. General ndimensional quadrature transform and its application to interferogram demodulation. JOSA A 20 (5), 925 (2003).

https://doi.org/10.1364/JOSAA.20.000925

Y.-J. Chen, A. Hansen, G.W. Hoth, E. Ivanov, B. Pelle, J. Kitching, E.A. Donley. Single-source multiaxis coldatom interferometer in a centimeter-scale cell. Phys. Rev. Appl. 12 (1), 014019 (2019).

https://doi.org/10.1103/PhysRevApplied.12.014019

A. ur Rahman, H. Ali, S. Haddadi, S. Zangi. Generating non-classical correlations in two-level atoms. Alexandria Engineering J. 67, 425 (2023).

https://doi.org/10.1016/j.aej.2022.12.054

A.K. Armel, Y.D. Germain, T.A. Giresse, T. Martin. The dynamic of quantum entanglement of two dimensional harmonic oscillator in non-commutative space. Phys. Scripta 96 (12), 125731 (2021).

https://doi.org/10.1088/1402-4896/ac42a9

A. Neven, J. Carrasco, V. Vitale, C. Kokail, A. Elben, M. Dalmonte, P. Calabrese, P. Zoller, B. Vermersch, R. Kueng et al. Symmetry-resolved entanglement detection using partial transpose moments. npj Quantum Information 7 (1), 152 (2021).

https://doi.org/10.1038/s41534-021-00487-y

D. Miki, N. Matsumoto, A. Matsumura, T. Shichijo, Y. Sugiyama, K. Yamamoto, N. Yamamoto. Generating quantum entanglement between macroscopic objects with continuous measurement and feedback control. Phys. Rev. A 107 (3), 032410 (2023).

https://doi.org/10.1103/PhysRevA.107.032410

Y. Yu, F. Ma, X.-Y. Luo, B. Jing, P.-F. Sun, R.-Z. Fang, C.-W. Yang, H. Liu, M.-Y. Zheng, X.-P. Xie et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578 (7794), 240 (2020).

https://doi.org/10.1038/s41586-020-1976-7

A. Salmanogli, D. Gokcen, H.S. Gecim. Entanglement sustainability in quantum radar. IEEE J. Selected Topics in Quantum Electronics 26 (6), 1 (2020).

https://doi.org/10.1109/JSTQE.2020.3020620

Y. Ren, S. Duan, W. Xie, Y. Shao, Z. Duan. Antibunched photon-pair source based on photon blockade in a nondegenerate optical parametric oscillator. Phys. Rev. A 103 (5), 053710 (2021).

https://doi.org/10.1103/PhysRevA.103.053710

T. Abebe, C.G. Feyisa. Dynamics of a nondegenerate three-level laser with parametric amplifier and coupled to a two-mode squeezed vacuum reservoir. Brazilian J. Phys. 50 (5), 495 (2020).

https://doi.org/10.1007/s13538-020-00779-2

B. G'abor, D. Nagy, A. Dombi, T. Clark, F. Williams, K. Adwaith, A. Vukics, P. Domokos. Ground-state bistability of cold atoms in a cavity. Phys. Rev. A 107 (2), 023713 (2023).

https://doi.org/10.1103/PhysRevA.107.023713

J.R. Cuartas, H. Vinck-Posada. Uncover quantumness in the crossover from coherent to quantum-correlated phases via photon statistics and entanglement in the taviscummings model. Optik 245, 167672 (2021).

https://doi.org/10.1016/j.ijleo.2021.167672

T. Abebe, C. Gashu. Generation of entangled light from a nondegenerate three-level laser coupled to a twomode vacuum reservoir. Ukr. J. Phys. 66 (7), 551 (2021).

https://doi.org/10.15407/ujpe66.7.551

D. Safronenkov, N. Borshchevskaya, T. Novikova, K. Katamadze, K. Kuznetsov, G.K. Kitaeva. Measurement of the biphoton second-order correlation function with analog detectors. Optics Express 29 (22), 36644 (2021).

https://doi.org/10.1364/OE.441488

Downloads

Published

2023-04-20

How to Cite

Kumela, A., Gemta, A., Hordofa, A., Desta, T., Dangish, M., & Mekonnen, H. (2023). The Quantum Features of Correlated Photons with the Effect of Phase Fluctuation. Ukrainian Journal of Physics, 68(2), 81. https://doi.org/10.15407/ujpe68.2.81

Issue

Section

Optics, atoms and molecules