Mechanical Modification of Electronic Properties of Ul-trathin β-Ga2O3 Films

Authors

  • R.M. Balabai Kryvyi Rig State Pedagogical University
  • V.M. Zdeschits Kryvyi Rig State Pedagogical University
  • M.V. Naumenko Kryvyi Rig State Pedagogical University

DOI:

https://doi.org/10.15407/ujpe66.12.1048

Keywords:

, ab initio calculations, mechanical compression

Abstract

Using the methods of the electronic density functional and pseudopotential theories, the spatial distributions of the valence electron density, the density of electronic states, and the gap widths in thin β-Ga2O3 films with various free surfaces subjected to mechanical compression are obtained from the first principles and using the author’s program code. It is shown that the thickness of the β-Ga2O3 films, the type of their free surface, and the mechanical action of compression allow the conductive properties of β-Ga2O3 thin films to be controlled.

References

R. Roy, V.G. Hill, E.F. Osburn. Polymorphism of Ga2O3 and the system Ga2O3-H2O. Am. Chem. Soc. 74, 719 (1952).

https://doi.org/10.1021/ja01123a039

S.I. Stepanov, V.I. Nikolaev, V.E. Bougrov, A.E. Romanov. Gallium oxide: properties and application: A review. Rev. Adv. Mater. Sci. 44, 63 (2016).

S.J. Pearton, Fan Ren, M. Tadjer, J. Kim. Perspective: Ga2O3 for ultra-high power rectifiers and MOSFETS. Appl. Phys. 124, 220901-1-19 (2018).

https://doi.org/10.1063/1.5062841

M. Higashiwaki, K. Sasaki, A. Kuramata, T. Masui, S. Yamakoshi. Gallium oxide (Ga2O3) metal-semiconductor field-effect transistors on single-crystal β-Ga2O3 (010) substrates. Appl. Phys. Lett. 100, 013504 (2012).

https://doi.org/10.1063/1.3674287

E.G. Villora, K. Shimamura, Y. Yoshikawa, K. Aoki, N. Ichinose. Large-size β-Ga2O3 single crystals and wafers. J. Cryst. Growth 270, 420 (2004).

https://doi.org/10.1016/j.jcrysgro.2004.06.027

H. Aida, K. Nishiguchi, H. Takeda, N. Aota, K. Sunakawa, Y. Yaguchi. Growth of β-Ga2O3 single crystals by the edgedefined, film fed growth method. Appl. Phys. 47, 8506 (2008).

https://doi.org/10.1143/JJAP.47.8506

Z. Feng, A.F.M. Anhar Uddin Bhuiyan, Md. Rezaul Karim, H. Zhao. MOCVD homoepitaxy of Si-doped (010) β-Ga2O3 thin films with superior transport properties. Appl. Phys. Lett. 114, 250601 (2019).

https://doi.org/10.1063/1.5109678

S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, A.I. Pechnikov, N.A. Feoktistov. Epitaxial gallium oxide on SiC/Si substrates. Fiz. Tverd. Tela 58, 1812 (2016) (in Russian).

https://doi.org/10.1134/S1063783416090201

A.S. Grashchenko, S.A. Kukushkin, V.I. Nikolaev, A.V. Osipov, E.V. Osipova, I.P. Soshnikov. Study of the anisotropic elastoplastic properties of a-Ga2O3 films synthesized on SiC/Si substrates. Fiz. Tverd. Tela 60, 851 (2018) (in Russian).

https://doi.org/10.1134/S1063783418050104

S.J. Pearton, Y. Jiancheng, P.H. Cary IV, F. Ren, J. Kim, M.J. Tadjer, M.A. Mastro. A review of Ga2O3 materials, processing, and devices. Appl. Phys. Rev. 5, 011301 (2018).

https://doi.org/10.1063/1.5006941

N. Makeswaran, D. Das, V. Zade, P. Gaurav, V. Shutthanandan, S. Tan, C.V. Ramana. Size- and phase-controlled nanometer-thick β-Ga2O3 films with green photoluminescence for optoelectronic applications. ACS Appl. Nano Mater. 4, 3331 (2021).

https://doi.org/10.1021/acsanm.1c00378

S. Ilhom, A. Mohammad, D. Shukla, J. Grasso, B.G. Willis, A.K. Okyay, N. Biyikli. Low-temperature as-grown crystalline β-Ga2O3 films via plasma-enhanced atomic layer deposition. ACS Appl. Mater. Inter. 13, 8538 (2021).

https://doi.org/10.1021/acsami.0c21128

X.C. Guo, N.H. Hao, D.Y. Guo, Z.P. Wu, Y.H. An, X.L. Chu, L.H. Li, P.G. Li, M. Lei, W. H. Tang. β-Ga2O3/p-Si heterojunction solar-blind ultraviolet photodetector with enhanced photoelectric responsivity. J. Alloys Compd. 660, 136 (2016).

https://doi.org/10.1016/j.jallcom.2015.11.145

N. Suzuki, S. Ohira, M. Tanaka, T. Sugawara, K. Nakajima, T. Shishido. Fabrication and characterization of transparent conductive Sn-doped β-Ga2O3 single crystal. Phys. Status Solidi C 4, 2310 (2007).

https://doi.org/10.1002/pssc.200674884

Z. Li, T. Jiao, J. Yu, D. Hu, Y. Lv, W. Li, X. Dong, B. Zhang, Y. Zhang, Z. Feng, G. Li, G. Du. Single crystalline β-Ga2O3 homoepitaxial films grown by MOCVD. Vacuum 178, 109440 (2020).

https://doi.org/10.1016/j.vacuum.2020.109440

T. Jiao, Z. Li, W. Chen, X. Dong, Z. Li, Z. Diao, Y. Zhang, B. Zhang. Stable electron concentration Si-doped β-Ga2O3 films homoepitaxial growth by MOCVD. Coating 11, 589 (2021).

https://doi.org/10.3390/coatings11050589

G. Joshi, Y.S. Chauhan, A. Verma. Temperature dependence of β-Ga2O3 heteroepitaxy on c-plane sapphire using low pressure chemical vapor deposition. J. Alloys Compd. 883, 160799 (2021).

https://doi.org/10.1016/j.jallcom.2021.160799

M.A. Mastro, A. Kuramat, J. Calkins, J. Kim, F. Ren, S.J. Pearton. Opportunities and future directions for Ga2O3. ECS J. Solid State Sci. Tech. 6, 356 (2017).

https://doi.org/10.1149/2.0031707jss

X.H. Wang, F.B. Zhang, K. Saito, T. Tanaka, M. Nishio, Q.X. Guo. Electrical properties and emission mechanisms of Zn-doped β-Ga2O3 films. J. Phys. Chem. Solids 75, 1201 (2014).

https://doi.org/10.1016/j.jpcs.2014.06.005

K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki. Unusual elasticity of monoclinic β-Ga2O3. Appl. Phys. 124, 085102 (2018).

https://doi.org/10.1063/1.5047017

S. Krishnamoorthy, Z. Xia, S. Bajaj, M. Brenner, S. Rajan. Delta-doped β-gallium oxide field-effect transistor. Appl. Phys. Expr. 10, 051102 (2017).

https://doi.org/10.7567/APEX.10.051102

J. Su, R. Guo, Z. Lin, S. Zhang, J. Zhang, J. Chang, Y. Hao. Unusual electronic and optical properties of twodimensional Ga2O3 predicted by density functional theory. J. Phys. Chem. C 122, 24592 (2018).

https://doi.org/10.1021/acs.jpcc.8b08650

J. Li, L. An, C. Lu, J. Liu. Conversion between hexagonal GaN and β-Ga2O3 nanowires and their electrical transport properties. Nano Lett. 6, 148 (2006).

https://doi.org/10.1021/nl051265k

P. Jiang, X. Qian, X. Li, R. Yang. Three-dimensional anisotropic thermal conductivity tensor of single crystalline β-Ga2O3. Appl. Phys. Lett. 113, 232105 (2018).

https://doi.org/10.1063/1.5054573

J. Su, J. Zhang, R. Guo, Z. Lin, M. Liu, J. Zhang, J. Chang, Y. Hao. Mechanical and thermodynamic properties of two-dimensional monoclinic Ga2O3. Mater. Design 184, 108197 (2019).

https://doi.org/10.1016/j.matdes.2019.108197

K.-W. Ang, K.-J. Chui, V. Bliznetsov, C.-H. Tung, A. Du, N. Balasubramanian, G. Samudra, M.F. Li, Y.-C. Yeo. Lattice strain analysis of transistor structures with silicon-germanium and silicon-carbon source/drain stressors. Appl. Phys. Lett. 86, 093102 (2005).

https://doi.org/10.1063/1.1871351

E. Chikoidze, D.J. Rogers, F.H. Teherani, C. Rubio, G. Sauthier, H.J. Von Bardeleben, T. Tchelidze, C. TonThat, A. Fellous, P. Bove, E.V. Sandana, Y. Dumont, A. Perez-Tomas. Puzzling robust 2D metallic conductivity in undoped β-Ga2O3 thin films. Mater. Today Phys. 8, 10 (2019).

https://doi.org/10.1016/j.mtphys.2018.11.006

S. Luan, L. Dong, R. Jia. Analysis of the structural, anisotropic elastic and electronic properties of β-Ga2O3 with various pressures. J. Cryst. Growth 505, 74 (2019).

https://doi.org/10.1016/j.jcrysgro.2018.09.031

K. Adachi, H. Ogi, N. Takeuchi, N. Nakamura, H. Watanabe, T. Ito, Y. Ozaki. Unusual elasticity of monoclinic β-Ga2O3. J. Appl. Phys. 124, 085102 (2018).

https://doi.org/10.1063/1.5047017

H. He, M.A. Blanco, R. Pandey. Electronic and thermodynamic properties of β-Ga2O3. Appl. Phys. Lett. 88, 261904 (2006).

https://doi.org/10.1063/1.2218046

R. Ahrling, J. Boy, M. Handwerg, O. Chiatti, R. Mitdank, G. Wagner, Z. Galazka, S.F. Fischer. Transport properties and finite size effects in β-Ga2O3 thin films. Sci. Rep. 9, 13149 (2019).

https://doi.org/10.1038/s41598-019-49238-2

R. Balabai, A. Solomenko. Flexible 2D layered material junctions. Appl. Nanosc. 9, 1011 (2019).

https://doi.org/10.1007/s13204-018-0709-9

G.B. Bachelet, D.R. Hamann, M. Schluter. Pseudopotentials that work: from H to Pu. Phys. Rev. B 26, 4199 (1982).

https://doi.org/10.1103/PhysRevB.26.4199

G. Makov, R. Shah, M.C. Payne. Periodic boundary conditions in ab initio calculations. II. Brillouin-zone sampling for aperiodic systems. Phys. Rev. B 53, 15513 (1996).

https://doi.org/10.1103/PhysRevB.53.15513

J. Ahman, G. Svensson, J. Albertsson. A reinvestigation of β-gallium oxide. Acta Cryst. C 52, 1336 (1996).

https://doi.org/10.1107/S0108270195016404

S. Geller. Crystal structure of β-Ga2O3. J. Chem. Phys. 33, 676 (1960).

https://doi.org/10.1063/1.1731237

S. Kumar, R. Singh. Nanofunctional gallium oxide (Ga2O3) nanowires/nanostructures and their applications in nanodevices. Phys. Status Solidi RRL 7, 781 (2013).

https://doi.org/10.1002/pssr.201307253

R.M. Balabai, M.V. Naumenko. Methodology of converting of the coordinates of the basis atoms in a unit cell of crystalline β-Ga2O3, specified in a monoclinic crystallographic system, in the laboratory cartesian coordinates for computer applications. Photoelectronics 29 (2020).

X.-Q. Zheng, J. Lee, S. Rafique, L. Han, C.A. Zorman, H. Zhao, Ph.X.-L. Feng. Free-standing β-Ga2O3 thin diaphragms. Electronic Materials 47, 973 (2018). https://doi.org/10.1007/s11664-017-5978-7

R. Balabai, D. Kravtsova. Hardness of diamond-cBN nanocomposite. Diamond Rel. Mater. 82, 56 (2018). https://doi.org/10.1016/j.diamond.2017.12.016

V.S. Vavilov, A.E. Kiv, O.R. Niyazov. Mechanisms of Formation and Migration of Defects in Semiconductor s (Nauka, 1981) (in Russian).

Published

2021-12-20

How to Cite

Balabai, R., Zdeschits, V., & Naumenko, M. (2021). Mechanical Modification of Electronic Properties of Ul-trathin β-Ga2O3 Films. Ukrainian Journal of Physics, 66(12), 1048. https://doi.org/10.15407/ujpe66.12.1048

Issue

Section

Semiconductors and dielectrics