Spin-Polarized Current-Driven Ferromagnetic Domain Wall Motion with a Skyrmion-Like Building Block

Authors

  • O. Gorobets National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Magnetism of NAS and MES of Ukraine
  • Yu. Gorobets National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”, Institute of Magnetism of NAS and MES of Ukraine
  • I. Tiukavkina National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”
  • R. Gerasimenko National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”

DOI:

https://doi.org/10.15407/ujpe65.10.919

Keywords:

ferromagnet, domain wall, skyrmion-like building block, spin-polarized current

Abstract

The purpose of the research is the construction of an analytic model for the description of a spin-polarized current-driven ferromagnetic domain wall motion with a skyrmion-like building block. The motion velocity of the ferromagnetic domain wall with a skyrmion-like building block is found as a function of the driving torques and an external magnetic field strength.

References

A. Pushp, T. Phung, C. Rettner, B.P. Hughes, S.H. Yang, L. Thomas, S.S.P. Parkin. Domain wall trajectory determined by its fractional topological edge defects. Nat. Phys. 9, 505 (2013). https://doi.org/10.1038/nphys2669

S. Konishi. A new-ultra-density solid state memory: Bloch line memory. IEEE Trans. Magn. 19, 1838 (1983). https://doi.org/10.1109/TMAG.1983.1062715

L.J. Schwee, H.R. Irons, W.E. Anderson. The crosstie memory. IEEE Trans. Magn. 12, 608 (1976). https://doi.org/10.1109/TMAG.1976.1059098

A.P. Malozemoff, J. C. Slonczewski. Magnetic Domain Walls in Bubble Materials (Academic Press, 1976) [ISBN: 978-0-12-002951-8].

E.E. Huber, jr., D.O. Smith, J.B. Goodenough. Domain-wall structure in permalloy films. J. Appl. Phys. 29, 294 (1958). https://doi.org/10.1063/1.1723105

A. Hubert, R. Schafer. Magnetic Domains (Springer, 2009) [ISBN: 978-3-540-64108-7].

A. Hubert. Theorie Der Dom' 'anenw' 'ande in Geordneten Medien (Springer, 1974).

U. Hartmann, H.H. Mende. Observation of subdivided 180∘ Bloch wall configurations on iron whiskers. J. Appl. Phys. 59, 4123 (1986). https://doi.org/10.1063/1.336670

M.M. Farztdinov, S.D. Mal'ginova. On the domain structure of rare-earth orthoferrites. Fiz. Tverd. Tela 12, 2954 (1970).

M.V. Chetkin, Y.N. Kurbatova, T.B. Shapaeva, O.A. Borshchegovskii. Gyroscopic quasi-relativistic dynamics of antiferromagnetic vortex in domain boundary of yttrium orthoferrite. J. Exp. Theor. Phys. Lett. 79, 420 (2004). https://doi.org/10.1134/1.1776235

E. Feldtkeller. Mikromagnetisch stetige und unstetige Magnetisierungskonfigurationen. Z. Angew. Phys. 19, 530 (1965).

W. Doring. Point singularities in micromagnetism. J. Appl. Phys. 39, 1006 (1968). https://doi.org/10.1063/1.1656144

Y.P. Kabanov, L.M. Dedukh, V.I. Nikitenko. Bloch points in an oscillating Bloch line. JETP Lett. 49, 637 (1989).

A. Thiaville, J. Miltat. Controlled injection of a singular point along a linear magnetic structure. EPL 26 (1994). https://doi.org/10.1209/0295-5075/26/1/010

S. Da Col, S. Jamet, N. Rougemaille, A. Locatelli, T.O. Mentes, B. Santos Burgos, R. Afid, M. Darques, L. Cagnon, J.C. Toussaint, O. Fruchart. Observation of Bloch-point domain walls in cylindrical magnetic nanowires. Phys. Rev. B 89, 180405 (2014). https://doi.org/10.1103/PhysRevB.89.180405

L. Landau. The theory of phase transitions. Nature 138, 840 (1936). https://doi.org/10.1038/138840a0

E.G. Galkina, B.A. Ivanov, V.A. Stephanovich. Phenomenological theory of Bloch point relaxation. J. Magn. Magn. Mater. 118, 373 (1993). https://doi.org/10.1016/0304-8853(93)90441-4

R.G. Elias, A. Verga. Magnetization structure of a Bloch point singularity. Eur. Phys. J. B 82, 159 (2011). https://doi.org/10.1140/epjb/e2011-20146-6

Mi-Young Im, Hee-Sung Han, Min-Seung Jung, Young-Sang Yu, Sooseok Lee, Seongsoo Yoon, Weilun Chao, Peter Fischer, Jung-Il Hong, Ki-Suk Lee. Dynamics of the Bloch point in an asymmetric permalloy disk. Nat. Commun. 10, 593 (2019). https://doi.org/10.1038/s41467-019-08327-6

O. V. Pylypovskyi, D.D. Sheka, Yu. Gaididei. Bloch point structure in a magnetic nanosphere. Phys. Rev. B: Condens. Matter Mater. Phys. 85, 224401 (2012). https://doi.org/10.1103/PhysRevB.85.224401

A. Thiaville, J.M. Garcia, R. Dittrich, J. Miltat, T. Schrefl. Micromagnetic study of Bloch-point-mediated vortex core reversal. Phys. Rev. B: Condens. Matter Mater. Phys. 67, 094410 (2003). https://doi.org/10.1103/PhysRevB.67.094410

S.K. Kim, O. Tchernyshyov. Pinning of a Bloch point by an atomic lattice. Phys. Rev. B: Condens. Matter Mater. Phys. 88, 174402 (2013). https://doi.org/10.1103/PhysRevB.88.174402

B. Van Waeyenberge, A. Puzic, H. Stoll, K.W. Chou, T. Tyliszczak, R. Hertel, M. Fahnle, H. Bruckl, K. Rott, G. Reiss, I. Neudecker, D. Weiss, C.H. Back, G. Schutz. Magnetic vortex core reversal by excitation with short bursts of an alternating field. Nature 444, 461 (2006). https://doi.org/10.1038/nature05240

K. Yamada, S. Kasai, Y. Nakatani, K. Kobayashi, H. Kohno, A. Thiaville, T. Ono. Electrical switching of the vortex core in a magnetic disk. Nat. Mater. 6, 270 (2007). https://doi.org/10.1038/nmat1867

R. Hertel, S. Gliga, M. F¨ahnle, C.M. Schneider. Ultrafast nanomagnetic toggle switching of vortex cores. Phys. Rev. Lett. 98, 117201 (2007). https://doi.org/10.1103/PhysRevLett.98.117201

R. Hertel, C.M. Schneider. Exchange explosions: Magnetization dynamics during vortex-antivortex annihilation. Phys. Rev. Lett. 97, 177202 (2006). https://doi.org/10.1103/PhysRevLett.97.177202

O.Y. Gorobets. Degeneration of magnetic states of the order parameter relative to the boundary conditions and discrete energy spectrum in ferromagnetic and antiferromagnetic nanotubes. Chaos, Solitons and Fractals 36, 671 (2008). https://doi.org/10.1016/j.chaos.2006.06.106

C.T. Boone, J.A. Katine, M. Carey, J.R. Childress, X. Cheng, I.N. Krivorotov. Rapid domain wall motion in permalloy nanowires excited by a spin-polarized current applied perpendicular to the nanowire. Phys. Rev. Lett. 104, 097203 (2010). https://doi.org/10.1103/PhysRevLett.104.097203

C.T. Boone, I.N. Krivorotov. Magnetic domain wall pumping by spin transfer torque. Phys. Rev. Lett. 104, 167205 (2010). https://doi.org/10.1103/PhysRevLett.104.167205

J.C. Slonczewski. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159, L1 (1996). https://doi.org/10.1016/0304-8853(96)00062-5

O.Y. Gorobets, Y.I. Gorobets. 3D analytical model of skyrmion-like structures in an antiferromagnet with DMI. J. Magn. Magn. Mater. 507, 166800 (2020). https://doi.org/10.1016/j.jmmm.2020.166800

Downloads

Published

2020-10-09

How to Cite

Gorobets, O., Gorobets, Y., Tiukavkina, I., & Gerasimenko, R. (2020). Spin-Polarized Current-Driven Ferromagnetic Domain Wall Motion with a Skyrmion-Like Building Block. Ukrainian Journal of Physics, 65(10), 919. https://doi.org/10.15407/ujpe65.10.919

Issue

Section

Physics of magnetic phenomena and physics of ferroics