Consistent Theory of Alpha-Decay

Authors

  • A.Ya. Dzyublik Institute for Nuclear Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe66.5.379

Keywords:

decay theory, alpha-decay, tunneling, scattering theory

Abstract

In the framework of the Goldberger–Watson decay theory, we consider the a-decay of nuclei as a transition between the initial bound state of the nucleus and scattering states of the continuum spectrum with a-particle. The scattering wave functions for the a-decay with arbitrary orbital angular momentum are derived in the quasiclassical approximation. The a-particle is described by the square-integrable wave packet formed by these functions, whose amplitude exponentially grows outside the nucleus up to the wave front. The Moshinsky’s distortions of the a-wave front are analyzed. The derived general expression for the decay rate is approximated by the quasiclassical formula.

References

D.M. Brink, M.C. Nemes, D. Vautherin. Eff ect of intrinsic degrees of freedom on the quantum tunneling of a collective variable. Ann. Phys. 147, 171 (1983).

https://doi.org/10.1016/0003-4916(83)90070-2

R.G. Lovas, R.J. Liotta, A. Insoliac, K. Vargaa, D.S. Deliond. Microscopic theory of cluster radioactivity. Phys. Rep. 294, 265 (1998).

https://doi.org/10.1016/S0370-1573(97)00049-5

S.G. Kadmensky, S.D. Kurgalin, Yu.M. Chuvilskii. Cluster states in atomic nuclei and cluster-decay processes. Phys. J. Part. Nucl. 38, 1333 (2007).

https://doi.org/10.1134/S1063779607060019

A. Sandulescu, W. Greiner. Cluster decays. Rep. Prog. Phys. 55, 1423 (1992).

https://doi.org/10.1088/0034-4885/55/9/002

D.S. Delion. Theory of Particles and Clusters Emission (Springer, 2010) [ISBN 978-3-642-14406-6].

R.G. Thomas. A formulation of the theory of alpha-particle decay from time-independent equations. Prog. Theor. Phys. 12, 253 (1954)

https://doi.org/10.1143/PTP.12.253

H.F. Zhang, G. Royer. A particle preformation in heavy nuclei and penetration probability. Phys. Rev. C 77, 054318 (2008).

https://doi.org/10.1103/PhysRevC.77.054318

A. Zdeb, M. Warda, K. Pomorski. Half-lives for a and cluster radioactivity in a simple model. Phys. Scr. T 154, 014029 (2013).

https://doi.org/10.1088/0031-8949/2013/T154/014029

A. Zdeb, M. Warda, K. Pomorski. Half-lives for a and cluster radioactivity within a Gamow-like model. Phys. Rev. C 87, 024308 (2013).

https://doi.org/10.1103/PhysRevC.87.024308

I. Silisteanu, W. Scheid, A. Sandulescu. Proton, alpha and cluster decay rates for nuclei with 52 ≤ Z ≤ 56 and 52 ≤ N ≤ 60. Nucl. Phys. A 679, 317 (2001).

https://doi.org/10.1016/S0375-9474(00)00336-5

Daming Deng, Zhongzhou Ren. Improved double-folding a-nucleus potential by including nuclear medium eff ects. Phys. Rev. C 96, 064306 (2017).

https://doi.org/10.1103/PhysRevC.96.064306

V.Yu. Denisov, A.A. Khudenko. a decays to ground and excited states of heavy deformed nuclei. Phys. Rev. C 80, 034603 (2009).

https://doi.org/10.1103/PhysRevC.80.034603

V.Yu. Denisov, A.A. Khudenko. Erratum: a decays to ground and excited states of heavy deformed nuclei. Phys.

Rev. C 80, 034603 (2009); Phys. Rev. C 82, 059902(E) (2010).

M. Ismail, A.Y. Ellithi, M.M. Botros, A. Abdurrahman. Penetration factor in deformed potentials: Application to

a decay with deformed nuclei. Phys. Rev. C 86, 044317 (2012).

Chang Xu, Zhongzhou Ren. Favored a-decays of medium mass nuclei in density-dependent cluster model. Nucl. Phys. A 760, 303 (2005).

https://doi.org/10.1016/j.nuclphysa.2005.06.011

Chang Xu, Zhongzhou Ren. New deformed model of a-decay half-lives with a microscopic potential. Phys. Rev. C 73, 041301(R) (2006).

https://doi.org/10.1103/PhysRevC.73.041301

D.F. Jackson, M. Rhoades-Brown. Theories of alpha-decay. Ann. Phys. 105, 151 (1977).

https://doi.org/10.1016/0003-4916(77)90231-7

T. Berggren, P. Olandes. Alpha decay from deformed nuclei:(I). Formalism and application to ground-state decays. Nucl. Phys. A 473, 189 (1987).

https://doi.org/10.1016/0375-9474(87)90142-4

T. Berggren, P. Olandes. Alpha decay from deformed nuclei: (II). Application to the decay of high-spin states. Nucl. Phys. A 473, 221 (1987).

https://doi.org/10.1016/0375-9474(87)90143-6

T. Berggren. Anisotropic alpha decay from oriented oddmass isotopes of some light actinides. Phys. Rev. C 50,

https://doi.org/10.1103/PhysRevC.50.2494

(1994).

Xiao-Dong Sun, Ping Guo, Xiao-Hua Li. Systematic study of a decay half-lives for even-even nuclei within a two-potential approach. Phys. Rev. C 93, 034316 (2016).

https://doi.org/10.1103/PhysRevC.93.034316

Xiao-Dong Sun, Chao Duan, Jun-Gang Deng, Ping Guo, Xiao-Hua Li. Systematic study of a decay for odd-A nuclei within a two-potential approach. Phys. Rev. C 95, 014319 (2017).

https://doi.org/10.1103/PhysRevC.95.014319

B. Sahu, S. Bhoi. Potential for a-induced nuclear scattering, reaction and decay, and a resonance-pole-decay model with exact explicit analytical solutions. Phys. Rev. C 96, 044602 (2017).

https://doi.org/10.1103/PhysRevC.96.044602

R.M. Clark, H.L. Crawford, A.O. Macchiavelli, D. Rudolph, A. Sеmark-Roth, C.M. Campbell, M. Cromaz, P. Fallon, C. Morse, C. Santamaria. a decay of high-spin isomers in N = 84 isotones. Phys. Rev. C 99, 024325 (2019).

https://doi.org/10.1103/PhysRevC.99.024325

G. Gamow. Zur Quantentheorie des Atomkernes. Z. Phys. 51, 204 (1928).

https://doi.org/10.1007/BF01343196

R.W. Gurney, E.U. Condon. Quantum mechanics and radioactive disintegration. Phys. Rev. 33, 127 (1929).

https://doi.org/10.1103/PhysRev.33.127

A.G. Sitenko. Lectures in Scattering Theory. Edited by P.J. Shepherd (Elsevier, 1971) [ISBN: 9781483486825].

https://doi.org/10.1016/B978-0-08-016574-5.50007-8

F.F. Karpeshin, G. LaRana, E. Vardaci, A. Brondi, R. Moro, S.N. Abramovich, V.I. Serov. Resonances in alpha-

nuclei interaction. J. Phys. G: Nucl. Part. Phys. 34, 587 (2007).

https://doi.org/10.1088/0954-3899/34/3/016

S.A. Gurvitz, G. Kalbermann. Decay width and the shift of a quasistationary state. Phys. Rev. Lett. 59, 262 (1987).

https://doi.org/10.1103/PhysRevLett.59.262

S.A. Gurvitz. Novel approach to tunneling problems. Phys. Rev. A 38, 1747 (1988).

https://doi.org/10.1103/PhysRevA.38.1747

S.A. Gurvitz, P.B. Semmes, W. Nazarewicz, T. Vertse. Modifi ed two-potential approach to tunneling problems. Phys. Rev. A 69, 042705 (2004).

https://doi.org/10.1103/PhysRevA.69.042705

M.L. Goldberger, K.M. Watson. Collision Theory, (J. Wiley, 1964) [ISBN: 978-0486435077].

https://doi.org/10.1063/1.3051231

A.Ya. Dzyublik. Integrable wave function, describing space-time evolution of alpha-decay. arXiv: 2001.09505v1[nucl-th]26Jan2020.

A.Ya. Dzyublik. Alpha decay of deformed even-even nuclei. Acta Phys. Polonica 10, 69 (2017).

https://doi.org/10.5506/APhysPolBSupp.10.69

M. Freer, M. Freer, H. Horiuchi, Y. Kanada-En'yo, D. Lee, Ulf-G. Meibner. Microscopic clustering in light nuclei. Rev. Mod. Phys. 90, 035004 (2018).

https://doi.org/10.1103/RevModPhys.90.035004

N.T. Zinner. Alpha decay rate enhancement in metals: An unlikely scenario. Nucl. Phys. A 781, 81 (2007).

https://doi.org/10.1016/j.nuclphysa.2006.10.071

A.Ya. Dzyublik. Infl uence of electronic environment on a decay. Phys. Rev. C 90, 054619 (2014).

https://doi.org/10.1103/PhysRevC.90.054619

R.G. Newton. Scattering Theory of Waves and Particles (Springer, 1982) [ISBN: 978-3-642-88128-2].

https://doi.org/10.1007/978-3-642-88128-2

A.S. Davydov. Quantum Mechanics. Edited by D. ter Haar (Elsevier, 1965) [ISBN: 9781483187839].

G. Esposito. A phase-integral perspective on a-decay. Eur. Phys. J. Plus 135, 692 (2020).

https://doi.org/10.1140/epjp/s13360-020-00719-8

R.E. Langer. On the connection formulas and the solutions of the wave equation. Phys. Rev. 51, 669 (1937).

https://doi.org/10.1103/PhysRev.51.669

M. Moshinsky. Boundary conditions and time-dependent states. Phys. Rev. 84, 525 (1951).

https://doi.org/10.1103/PhysRev.84.525

M. Moshinsky. Diff raction in time. Phys. Rev. Lett. 88, 625 (1952).

https://doi.org/10.1103/PhysRev.88.625

R.G. Winter. Evolution of a quasi-stationary state. Phys. Rev. 123, 1503 (1961).

https://doi.org/10.1103/PhysRev.123.1503

G. Garcia-Calder'on, A. Rubio. Transient effects and delay time in the dynamics of resonant tunneling. Phys. Rev. A 55, 3361 (1997).

https://doi.org/10.1103/PhysRevA.55.3361

W. van Dijk, Y. Nogami. Novel expression for the wave function of a decaying quantum system. Phys. Rev. Lett. 83, 2867 (1999). https://doi.org/10.1103/PhysRevLett.83.2867

W. van Dijk, F. Kataoka, Y. Nogami. Space-time evolution of a decaying quantum state. J. Phys. A 32, 6347 (1999). https://doi.org/10.1088/0305-4470/32/35/311

W. van Dijk. Numerical time-dependent solutions of the Schr¨odinger equation with piecewise continuous potentials. Phys. Rev. E 93, 063307 (2016). https://doi.org/10.1103/PhysRevE.93.063307

Handbook of Mathematical Functions. Edited by M. Abramovitz, I.A. Stegun (Nat. Bureau of Standards, 1972).

I.S. Gradshteyn, I.M. Ryzhik. Table of Integrals, Series, and Products. Edited by D. Zwillinger (Academic Press, 2007) [ISBN: 978-0-12-373637-6].

Downloads

Published

2021-05-28

How to Cite

Dzyublik, A. (2021). Consistent Theory of Alpha-Decay. Ukrainian Journal of Physics, 66(5), 379. https://doi.org/10.15407/ujpe66.5.379

Issue

Section

General physics