Methods of Calculation of the Magneto-Optical Characteristics of Ferromagnetic Materials

Authors

  • V. Stashchuk Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V. Stukalenko Taras Shevchenko National University of Kyiv, Faculty of Physics
  • S. Rozouvan Taras Shevchenko National University of Kyiv, Faculty of Physics
  • V. Lysiuk V. Lashkaryov Institute of Semiconductor Physics of the NAS of Ukraine

DOI:

https://doi.org/10.15407/ujpe65.4.310

Keywords:

magneto-optical properties, optical conductivity tensor, off-diagonal components, Kerr effect, ferromagnetic materials

Abstract

We have calculated the optical and magneto-optical properties of ferromagnetics in a wide spectral range hv = 1.24–5.15 eV, by applying theoretical models which were reported earlier in the literature. This allowed us to find a connection between the conductivity and the measured values of the complex Kerr angle Θ in order to establish the most proper technique for processing the experimental data. The behavior of the dispersion curves of diagonal and non-diagonal components of the tensor of optical conductivity depends on the choice of signs of the imaginary parts of a complex Kerr angle and a refractive index, which should be taken into account in the data analysis. The differences between dispersion dependences are insignificant in the region of energies higher than 4.5 eV. In this paper, the classical theory of free electrons in metals has been applied to give more details about the magneto-optical Kerr effect in ferromagnetic samples.

References

John Kerr. On rotation of the plane of polarization by reflection from the pole of a magnet. Phil. Magaz. 3, 321 (1877). https://doi.org/10.1080/14786447708639245

A.D. Buckingham. Theoretical studies of the Kerr effect I: Deviations from a linear polarization law. Proc. Phys. Soc. A 68, 905 (1955). https://doi.org/10.1088/0370-1298/68/10/307

A.D. Buckingham. Theoretical studies of the Kerr effect II: The influence of pressure. Proc. Phys. Soc. A 68, 910 (1955). https://doi.org/10.1088/0370-1298/68/10/308

L. Uba, S. Uba, V.N. Antonov. Magneto-optical Kerr spectroscopy of noble metals. Phys. Rev. B 96, 235132 (2017). https://doi.org/10.1103/PhysRevB.96.235132

Xiang Gao, John A. Woollam, R.D. Kirby, D.J. Sellmyer, C.T. Tanaka, J. Nowak, J.S. Moodera. Dielectric tensor for magneto-optic NiMnSb. Phys. Rev. B 59, 9965 (1999). https://doi.org/10.1103/PhysRevB.59.9965

I.M. Boswarva, R.E. Howard, A.B. Lidiard, C.A. Coulson. Faraday effect in semiconductors. Proc. Royal Soc. London A 269, 125 (1962). https://doi.org/10.1098/rspa.1962.0166

W.H. Kleiner. Space-time symmetry of transport coefficients. Phys. Rev. 142, 318 (1966). https://doi.org/10.1103/PhysRev.142.318

V. Staschuk, V. Kravets, V. Lysiuk, O. Polyanska, V. Stukalenko, A. Yampolsky. Structure and optical properties of (Co41Fe39B20)x(SiO2)1−x nanocomposites. Ukr. J. Phys. 62 (8), 662 (2017). https://doi.org/10.15407/ujpe62.08.0666

D.H. Seib, W.E. Spicer. Photoemission and оptical studies of Cu-Ni аlloys. Phys. Rev. В 2, 1676 (1970). https://doi.org/10.1103/PhysRevB.2.1676

K.H.J. Buschow, P.G. van Engen, R. Jongebreur.Magneto-optical properties of metallic ferromagnetic materials. J. Magn. Magn. Mater. 38, 1 (1983). https://doi.org/10.1016/0304-8853(83)90097-5

S. Uba, A. Bonda, L. Uba, L. V. Bekenov, V.N. Antonov, A. Ernst. Electronic structure and magneto-optical Kerr effect spectra of ferromagnetic shape-memory Ni-Mn-Ga alloys: Experiment and density functional theory calculations. Phys. Rev. B 94, 054427 (2016) . https://doi.org/10.1103/PhysRevB.94.054427

P.N. Argyres. Theory of the Faraday and Kerr effects in ferromagnetics. Phys. Rev. 97, 2, 334 (1955). https://doi.org/10.1103/PhysRev.97.334

M. Born, E. Wolf. Principles of Optics (Pergamon Press, 1991).

S. Bord'acs, I. K'ezsm'arki, K. Ohgush, Y. Tokura. Experimental band structure of the nearly half-metallic CuCr2Se4: An optical and magneto-optical study. New J. Phys. 12, 053039 (2010). https://doi.org/10.1088/1367-2630/12/5/053039

P.M. Oppeneer, J. Sticht, T. Maurer, J. K¨obler. Ab initio investigation of microscopic enhancement factors in tuning the magneto-optical Kerr effect. Zeitschrift f¨ur Physik B Condensed Matter. 88, 309 (1992). https://doi.org/10.1007/BF01470918

Chun Yeol You, Sung Chul Shin. Determination of the off-diagonal element of the dielectric tensor without measuring the ellipticity. Appl. Phys. Lett. 68, 2882 (1996). https://doi.org/10.1063/1.116319

W. Reim, J. Schoenes. Magneto-optical spectroscopy of f-electron systems. In: Handbook of Ferromagnetic Materials, edited by K.H.J. Buschow, E.P. Wohlfarth (North-Holland, 1990), Ch. 2, pp. 133 -236. https://doi.org/10.1016/S1574-9304(05)80062-8

S. Patankar, J.P. Hinton, J. Griesmar, J. Orenstein, J.S. Dodge, Xufeng Kou, Lei Pan, Kang L. Wang, A.J. Bestwick, E.J. Fox, D. Goldhaber-Gordon, Jing Wang, and Shou-Cheng Zhang. Resonant magneto-optic Kerr effect in the magnetic topological insulator Cr:(Sbx,Bi1−x)2Te3. Phys. Rev. B 92, 214440 (2015). https://doi.org/10.1103/PhysRevB.92.214440

Frederic J. Kahn, P.S. Pershan, J.P. Remeika. Ultraviolet magneto-optical properties of single-crystal orthoferrites, garnets, and other ferric oxide compounds. Phys. Rev. 186 (3), 891 (1969). https://doi.org/10.1103/PhysRev.186.891

Sang Y. Kim, Sang J. Kim, Hun Seo, Myong R. Kim. Complex refractive indices of GeSbTe-alloy thin films: Effect of nitrogen doping and wavelength dependence. Jpn. J. Appl. Phys. 38, 1713 (1999). https://doi.org/10.1143/JJAP.38.1713

L.V. Poperenko, Yu.V. Kudrjavtsev, V.S. Stashchuk, Yang Pak Li. Optics of Metal Structures (Kyiv University, 2013) (in Ukrainian).

Downloads

Published

2020-04-17

How to Cite

Stashchuk, V., Stukalenko, V., Rozouvan, S., & Lysiuk, V. (2020). Methods of Calculation of the Magneto-Optical Characteristics of Ferromagnetic Materials. Ukrainian Journal of Physics, 65(4), 310. https://doi.org/10.15407/ujpe65.4.310

Issue

Section

Optics, atoms and molecules