Electronic Properties of Doped Wurtzite ZnO: Density Functional Theory

Authors

  • Jamal A. Talla Department of Physics, Al al-Bayt University

DOI:

https://doi.org/10.15407/ujpe65.3.268

Keywords:

zinc oxide, Hubbard U method, nitrogen doping, electronic properties, density functional theory, charge density

Abstract

We implemented the density functional theory to inspect the electronic properties of pristine and nitrogen-doped wurtzite ZnO. We use the Hubbard U (DFT + Ud + Up) method to correct any underestimation in the band gap. The obtained band gap is consistent with previous experimental results. Here, we consider four different configurations of nitrogen-doped ZnO. We have found that the band gap values for ZnO are sensitive to the nitrogen concentration.

References

U. Ozgur, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Dogan, V. Avrutin, S.J. Cho, H. Morkoc. A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98, 041301 (2005). https://doi.org/10.1063/1.1992666

J.A. Talla. Ab initio simulations of doped single-walled carbon nanotube sensors. Chem. Phys. 392, 71 (2012). https://doi.org/10.1016/j.chemphys.2011.10.014

A. Janotti, C.G. Van de Walle. Fundamentals of zinc oxide as a semiconductor. Rep. Prog. Phys. 72, 126501 (2009). https://doi.org/10.1088/0034-4885/72/12/126501

M.M. Monshi, S.M. Aghaei, I. Calizo. Band gap opening and optical absorption enhancement in graphene using ZnO nanocluster. Phys. Lett. A 382, 1171 (2018). https://doi.org/10.1016/j.physleta.2018.03.001

P. Xu, Q. Tang, Z. Zhou. Structural and electronic properties of graphene-ZnO interfaces: dispersion-corrected density functional theory investigations. Nanotechnology 24, 305401 (2013). https://doi.org/10.1088/0957-4484/24/30/305401

F.S. Saoud, J.C. Plenet, M. Henini. Band gap and partial density of states for ZnO: Under high pressure. J. Alloys and Compounds 619, 812 (2016). https://doi.org/10.1016/j.jallcom.2014.08.069

Y.-S. Kim, W.-P. Tai. Electrical and optical properties of Al-doped ZnO thin films by sol-gel process. Appl. Surface Sci. 253, 4911 (2007). https://doi.org/10.1016/j.apsusc.2006.10.068

R. Rusdi, A.A. Rahman, N.S. Mohamed, N. Kamarudin, N. Kamarulzaman. Preparation and band gap energies of ZnO nanotubes, nanorods and spherical nanostructures. Powder Techn. 210, 18 (2011). https://doi.org/10.1016/j.powtec.2011.02.005

J. Zhao, L. Qin, L. Zhang. Synthesis of quasi-aligned Si-doped ZnO nanorods on Si substrate. Physica E: Low-dimens. Syst. Nanostruct. 40, 795 (2008). https://doi.org/10.1016/j.physe.2007.10.057

A.A. Peyghan, M. Noei. The alkali and alkaline earth metal doped ZnO nanotubes: DFT studies. Physica B: Condensed Matter 432, 105 (2014). https://doi.org/10.1016/j.physb.2013.09.051

F. Marcillo, L. Villamagua, A. Stashans. Analysis of electrical and magnetic properties of zinc oxide: A quantum mechanical study. Int. J. Modern Phys. B 31, 1750111 (2017). https://doi.org/10.1142/S0217979217501119

Y. Zhang, Y.-H. Wen, J.-C. Zheng, Z.-Z. Zhu. Strain-induced structural and direct-to-indirect band gap transition in ZnO nanotubes. Phys. Lett. A 374, 2846 (2010). https://doi.org/10.1016/j.physleta.2010.04.069

H. Xu, R.Q. Zhang, X. Zhang, A.L. Rosa, T. Frauenheim. Structural and electronic properties of ZnO nanotubes from density functional calculations. Nanotechnology 18, 485713 (2007). https://doi.org/10.1088/0957-4484/18/48/485713

S.S. Parhizgar, J. Beheshtian. Effect of nitrogen doping on electronic and optical properties of ZnO sheet: DFT+U study. Comput. Condensed Matter 15, 1 (2018). https://doi.org/10.1016/j.cocom.2018.03.001

F. Maldonado, A. Stashans. Al-doped ZnO: Electronic, electrical and structural properties. J, Phys. Chem. Sol. 71, 784 (2010). https://doi.org/10.1016/j.jpcs.2010.02.001

J.A. Talla. Pressure induced phase transition and band gap controlling in defective graphene mono-sheet: Density functional theory. Mater. Res. Express 6, 115012 (2019). https://doi.org/10.1088/2053-1591/ab4408

J.A. Talla. Band gap tuning of defective silicon carbide nanotubes under external electric field: Density functional theory. Phys. Lett. A 383, 2076 (2019). https://doi.org/10.1016/j.physleta.2019.03.040

J.A. Talla, A.F. Alsalieby. Effect of uniaxial tensile strength on the electrical properties of doped carbon nanotubes: Density functional theory. Chinese J. Phys. 59, 418 (2019). https://doi.org/10.1016/j.cjph.2019.01.022

J.A. Talla, K.A. Al-Khaza'leh, A.A. Ghozlan. Boron nitride nanotubes as a container for 5-fluorouracil anticancer drug molecules: Molecular dynamics simulation study. Adv. Sci., Engineer. Medicine 11, 1 (2019). https://doi.org/10.1166/asem.2019.2357

A.A. Ghozlan, J.A. Talla. Optical properties of defective silicon carbide nanotubes: Theoretical study. Rev. Cubana Fis. 36, 27 (2019).

E. Almahmoud, J.A. Talla. Band gap tuning in carbon doped boron nitride mono sheet with Stone-Wales defect: a simulation study. Mater. Res. Express 6, 105038 (2019). https://doi.org/10.1088/2053-1591/ab39a3

E.A. Almahmoud, J.A. Talla, H. Abu-Farsakh. Influence of uniaxial strain on the electronic properties of doped graphene mono-sheets: A theoretical study. Mater. Res. Express 6, 115617 (2019). https://doi.org/10.1088/2053-1591/ab4e28

J.A. Talla. Band-gap modulation of carbon nanotubes with Haeckelite structure under a transverse electric field: A first principle study. Comput. Condensed Matter 15, 25 (2018). https://doi.org/10.1016/j.cocom.2018.03.005

J.A. Talla, M. Nairat, K. Khazaeleh, A.A. Ghozlan, S.A. Salman. Optical properties of carbon nanotubes with Haeckelite structure under a transverse electric field: Density functional theory. Comput. Condensed Matter 16, e00311 (2018). https://doi.org/10.1016/j.cocom.2018.e00311

J.A. Talla, A.A. Ghozlan. Effect of boron and nitrogen codoping on CNT's electrical properties: Density functional theory. Chinese J. Phys. 56, 740 (2018). https://doi.org/10.1016/j.cjph.2018.01.009

Y. Zhao, J. Gong, H. Yang, P. Yang. Impact of high pressure on the optical and electrical properties of indium-doped n-type wurtzite zinc oxide according to first principles. Mater. Sci. Semicond. Proces. 19, 66 (2014). https://doi.org/10.1016/j.mssp.2013.10.030

M.F. Khana, K. Siraj, A. Sattarb, A.U.H. Faiz, J. Raisanen. Modification of structural and electrical properties of ZnO thin films by Ni2+ ions irradiation. Digest J. Nanomater. Biostructures 12, 689 (2017).

H.-C. Wu, Y.-C. Peng, T.-P. Shen. Electronic and optical properties of substitutional and interstitial Si-doped ZnO. Materials 5, (2012). https://doi.org/10.3390/ma5112088

R.M. Sheetz, I. Ponomareva, E. Richter, A.N. Andriotis, M. Menon, Defect-induced optical absorption in the visible range in ZnO nanowires. Phys. Rev. B 80, 195314 (2009). https://doi.org/10.1103/PhysRevB.80.195314

Downloads

Published

2020-03-26

How to Cite

Talla, J. A. (2020). Electronic Properties of Doped Wurtzite ZnO: Density Functional Theory. Ukrainian Journal of Physics, 65(3), 268. https://doi.org/10.15407/ujpe65.3.268

Issue

Section

Structure of materials