Hall-Effect Study of Disordered Regions in Proton-Irradiated n-Si Crystals

Authors

  • T. A. Pagava Georgian Technical University
  • M. G. Beridze Georgian Technical University
  • N. I. Maisuradze Georgian Technical University
  • L. S. Chkhartishvili Georgian Technical University
  • I. G. Kalandadze Georgian Technical University

DOI:

https://doi.org/10.15407/ujpe58.08.0773

Keywords:

disordered regions, proton irradiation, effective Hall mobility, silicon

Abstract

The nature and dimensions of disordered regions emerged in n-Si single crystals irradiated with high-energy (25 MeV) protons have been studied by carrying out Hall measurements of their electrophysical parameters. Specimens fabricated with the use of the zone-melting technique and doped with phosphorus to a concentration of 6x10^13 cm^-3 are investigated. Irradiation was carried out at room temperature to exposure doses of (1.8–8.1)x10^12 cm^-2. Depending on the irradiation dose and the temperature of isochronous annealing, some specimens irradiated with high-energy protons revealed a drastic increase of the effective Hall mobility мeff, which is explained by the emergence of “metallic” inclusions in them, i.e. regions with the conductivity considerably higher in comparison with that of the semiconductor matrix. The radius of those regions was estimated to be Rm < 80 nm. An assumption was made that the “metallic” inclusions are nano-sized atomic clusters.

References

<ol>

<li> M.G. Milvidskii and V.V.Chaldyshev, Fiz. Tekh. Poluprovodn. 32, 513 (1998).
</li>
<li> Nonlinear Laser Dynamics – From Quantum Dots to Cryptography, edited by K. L¨udge (Wiley-VCH, Weinheim, 2012).
</li>
<li> N.T. Bagraev, A.D. Bouravluev, W. Gehlhoff, L.E. Klyachkin, A.M. Malyarenko, V. Romanov, and S.A. Rykov, Def. Diff. Forum 237–240, 1049 (2005).
&nbsp;<a href="https://doi.org/10.4028/www.scientific.net/DDF.237-240.1049">https://doi.org/10.4028/www.scientific.net/DDF.237-240.1049</a>
</li>
<li> W. Bogaerts, P. de Heyn, Th. van Vaerenbergh, K. de Vos, Sh.K. Selvaraja, T. Claes, P. Dumon, P. Bienstman, D. van Thourhout, and R. Baets, Laser Photon. Rev. 6, 47 (2012).
&nbsp;<a href="https://doi.org/10.1002/lpor.201100017">https://doi.org/10.1002/lpor.201100017</a>
</li>
<li> J.M. van den Broek, L.A. Woldering, R.W. Tjerkstra, F.B. Segerink I.D. Setija, and W.L. Vos, Adv. Funct. Mater. 22, 25 (2012).
&nbsp;<a href="https://doi.org/10.1002/adfm.201101101">https://doi.org/10.1002/adfm.201101101</a>
</li>
<li> N. Notman, Mater. Today 15, 364 (2012).
&nbsp;<a href="https://doi.org/10.1016/S1369-7021(12)70160-8">https://doi.org/10.1016/S1369-7021(12)70160-8</a>
</li>
<li> J.H. Petermann, D. Zielke, J. Schmidt, F. Haase, E.G. Rojas, and R. Brendel, Prog. Photovolt. Res. Appl. 20, 1 (2012).
&nbsp;<a href="https://doi.org/10.1002/pip.1129">https://doi.org/10.1002/pip.1129</a>
</li>
<li> A.C. Warren, J.M. Woodall, J.L. Freeouf, D. Grischkowsky, D.T. McInturff, M.R. Melloch, and N. Otsuka, Appl. Phys. Lett. 57, 1331 (1990).
&nbsp;<a href="https://doi.org/10.1063/1.103474">https://doi.org/10.1063/1.103474</a>
</li>
<li> J.R. Srour, Ch.J. Marshall, and P.W. Marshall, IEEE Trans. Nucl. Sci. 50, 653 (2003).
&nbsp;<a href="https://doi.org/10.1109/TNS.2003.813197">https://doi.org/10.1109/TNS.2003.813197</a>
</li>
<li> I. Brodie and J.J. Muray, The Physics of Microfabrication (Plenum Press, New York, 1982).
</li>
<li> V.S. Vavilov, B.N. Gorin, and N.S. Danilin, Radiation Methods in Solid-State Electronics (Radio i Svyaz', Moscow, 1990) (in Russian).
</li>
<li> V.V. Kozlovskii, V.A. Kozlov, and V.N. Lomasov, Fiz. Tekh. Poluprovodn. 34, 129 (2000).
</li>
<li> V.A. Kozlov and V.V. Kozlovskii, Fiz. Tekh. Poluprovodn. 35, 769 (2001).
</li>
<li> V.I. Kuznetsov and P.L. Lugakov, Fiz. Tekh. Poluprovodn. 13, 625 (1979).
</li>
<li> V.I. Kuznetsov and P.L. Lugakov, Fiz. Tekh. Poluprovodn. 14, 1924 (1980).
</li>
<li> R.F. Konopleva, V.L. Litvinov, and N.A. Ukhin, The Features of Radiation-Induced Damage of Semiconductors by High-Energy Particles (Atomizdat, Moscow, 1971) (in Russian).
</li>
<li> E.V. Kuchis, Galvano-Magnetic Effects and Methods of Their Research (Radio i Svyaz', Moscow, 1990) (in Russian).
</li>
<li> I.V. Antonova, S.S. Shaimeev, and S.A. Smagulova, Fiz. Tekh. Poluprovodn. 40, 557 (2006).
</li>
<li> R.F. Konopleva and V.I. Ostroumov, Interaction of HighEnergy Charged Particles with Germanium and Silicon (Atomizdat, Moscow, 1975) (in Russian).
</li>
<li> L.S. Milevskii, T.M. Tkacheva, and T.A. Pagava, Zh. Eksp. Teor. Fiz. 69, 2132 (1975).
</li>
<li> A.L. Aseev, L.I. Fedina, D. Hoehl, and H. Barsch, Clusters of Interstitial Atoms in Silicon and Germanium (Akademie-Verlag, Berlin, 1994).
</li>
<li> L. Palmetshofer and J. Reisinger, J. Appl. Phys. 72, 21676 (1992).
&nbsp;<a href="https://doi.org/10.1063/1.351606">https://doi.org/10.1063/1.351606</a>
</li>
<li> P. Hazdra and J. Vobeeky, Solid State Phenom. 69-70, 545 (1999).
&nbsp;<a href="https://doi.org/10.4028/www.scientific.net/SSP.69-70.545">https://doi.org/10.4028/www.scientific.net/SSP.69-70.545</a>
</li>
<li> N.A. Ukhin, Fiz. Tekh. Poluprovodn. 6, 831 (1972).
</li>

</ol>

Published

2018-10-10

How to Cite

Pagava, T. A., Beridze, M. G., Maisuradze, N. I., Chkhartishvili, L. S., & Kalandadze, I. G. (2018). Hall-Effect Study of Disordered Regions in Proton-Irradiated n-Si Crystals. Ukrainian Journal of Physics, 58(8), 773. https://doi.org/10.15407/ujpe58.08.0773

Issue

Section

Solid matter

Most read articles by the same author(s)