Phonon and Polaron States of ZnO/GaN and GaN/AlN Cylindrical Wires

Authors

  • V.I. Boichuk Ivan Franko Drohobych State Pedagogical University
  • L.Ya. Voronyak Ivan Franko Drohobych State Pedagogical University
  • Ya.M. Voronyak Ivan Franko Drohobych State Pedagogical University

DOI:

https://doi.org/10.15407/ujpe56.5.466

Keywords:

-

Abstract

The energy of polarization phonons as a function of the wave vector as well as the polaron energy and effective mass as functions of the quantum wire radius R are determined for cylindrical quantum wires (QWs) of ZnO and GaN hexagonal crystals. It is shown that the dominant contribution to the polaron energy and the effective mass is made by quasi-longitudinal and interface phonon modes. It is established that the contribution of quasi-longitudinal phonons is determinative in the region R > 15 nm. The energies of QW polarons for cubic and hexagonal crystals are compared.

References

N. Mori and T. Ando, Phys. Rev. B 40, 6175 (1989).

https://doi.org/10.1103/PhysRevB.40.6175

M.H. Degani, Phys. Rev. B 40, 11937 (1989).

https://doi.org/10.1103/PhysRevB.40.11937

Li Qiang and S. Das Sarma, Phys. Rev. B 40, 5860 (1989).

https://doi.org/10.1103/PhysRevB.40.5860

N.V. Tkach and V.P. Zharkoi, Fiz. Tekhn. Polupr. 33, 598 (1999).

https://doi.org/10.1134/1.1187728

M.V. Tkach, O.M. Makhanets', and I.V. Prots', Ukr. Fiz. Zh. 46, 727 (2001).

H.J. Xie and X.Y. Liu, Superlatt. Microstruct. 39, 489 (2006).

https://doi.org/10.1016/j.spmi.2005.12.001

R.L. Rodriguez Suarez and A. Matos-Abiague, Physica E 18, 485 (2003).

https://doi.org/10.1016/S1386-9477(03)00228-5

K.W. Sun, C.L. Huang, G.B. Huang, and H.C. Lee, Solid St. Commun. 126, 519 (2003).

https://doi.org/10.1016/S0038-1098(03)00235-7

E.M. H¨ohberger, J. Kirschbaum, R.H. Blick, J.P. Kotthaus, and W. Wegscheider, Physica E, 18, 99 (2003).

https://doi.org/10.1016/S1386-9477(02)01029-9

Y. Imanaka, H. Nojiri, Y.A. Matsuda, and N. Miura, Physica B 346-347, 437 (2004).

https://doi.org/10.1016/j.physb.2004.01.122

H.C. Lee, K.W. Sun, and C.P. Lee, Solid St. Commun, 128, 245 (2003).

https://doi.org/10.1016/j.ssc.2003.08.012

You-Bin Yu, Kaang-Xian Guo, and Shi-Ning Zhu, Physica E 27, 62 (2005).

https://doi.org/10.1016/j.physe.2004.10.004

R. Betancourt-Riera, R. Betancourt, R. Rosas, R. Riera, and J.L. Martin, Physica E, 24, 257 (2004).

https://doi.org/10.1016/j.physe.2004.04.041

Li Zhang and Hong-Jing Xie, Physica B 363, 146 (2005).

https://doi.org/10.1016/j.physb.2005.03.016

Li Zhang and Jun-jie Shi, Semicond. Sci. Technol, 20, 592 (2005).

https://doi.org/10.1088/0268-1242/20/6/019

X.F. Wang and X.L. Lei, Phys. Rev. B 49, 4780 (1994).

https://doi.org/10.1103/PhysRevB.49.4780

Hsu-Cheng Hsu and Wen-Feng Hsieh, Phys. Rev. B 40, 11937 (1989).

https://doi.org/10.1103/PhysRevB.40.11937

S.M. Komirenko, K.W. Kim, M.A. Stroscio, and M. Dutta, Phys. Rev. B 59, 5013 (1999).

https://doi.org/10.1103/PhysRevB.59.5013

A.D. Andreev and E.P. O'Reilly, Phys. Rev. B 62, 15851 (2000).

https://doi.org/10.1103/PhysRevB.62.15851

Li Zhang and Jun-jie Shi, Solid St. Commun. 13, 1 (2006).

D.E.N. Brancus and L.Ion, Phys. Rev. B 76, 155304 (2007).

https://doi.org/10.1103/PhysRevB.76.155304

V.I. Boichuk, V.A. Borusevych, and I.S. Shevchuk, J. Optoelectron. Adv. Mater. 10, 1357 (2008).

V.I. Boichuk, V.A. Borusevych, and I.S. Shevchuk, Sensor Electron. Microsyst. Technol. 3, 11 (2008).

https://doi.org/10.18524/1815-7459.2008.3.114598

V.I. Boichuk, L.Ya. Voronyak, and Ya.M. Voronyak, Fiz. Khim. Tverd. Tela 11, 34 (2010).

L. Zhang, Superlatt. Microstruct. 46, 415 (2009).

https://doi.org/10.1111/j.1559-3584.1934.tb05153.x

L. Zhang, Phys. Lett. A 373, 2087 (2009).

https://doi.org/10.1016/j.physleta.2009.04.017

Published

2022-02-13

How to Cite

Boichuk В., Voronyak Л., & Voronyak Я. (2022). Phonon and Polaron States of ZnO/GaN and GaN/AlN Cylindrical Wires. Ukrainian Journal of Physics, 56(5), 466. https://doi.org/10.15407/ujpe56.5.466

Issue

Section

Nanosystems