Local Conservation Laws in a Nonlinear Electrodynamics

Authors

  • O.I. Batsula Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.5.416

Keywords:

-

Abstract

By using a generalization of the Lie–Poisson brackets for the dual Maxwell and Born–Infeld field strength tensors, we construct the gauge invariant axial-vector conserved currents for Born–Infeld and Heisenberg–Euler nonlinear electrodynamics in the 4-dimensional Minkowski space-time. The infinite hierarchies of the currents given by Lie brackets for generally covariant conserved vector and axial vector currents are established. These currents are conserved upon action of the gravitational fields, but the conservation is broken in the Einstein–Cartan theory (over a Riemann–Cartan space-time). The axial-vector currents are conserved only in the (3 + 1)-dimensional space-time.

References

M. Born and L. Infeld, Proc. Roy. Soc. (London) A 144, 425 (1934).

https://doi.org/10.1098/rspa.1934.0059

W. Heisenberg and H. Euler, Z. f"{ur Physik 98, 714 (1936).

https://doi.org/10.1007/BF01343663

V.S. Weisskopf and K. Dan, Vidensk. Selsk. Mat. Fys. Medd. 14, n. 6 (1936).

Z. Bialynicka-Birula and J. Bialynicka-Birula, Phys. Rev. D 2, 2341 (1970).

https://doi.org/10.1103/PhysRevD.2.2341

S.L. Adler, J.N. Bahcall, C.G. Callan, and M.N. Rosenbluth, Phys. Rev. Lett. 25, 1061 (1970); S.L. Adler, Annals Phys. 67, 599

https://doi.org/10.1016/0003-4916(71)90154-0

(1971).

M.G. Baring, Phys. Rev. D 62, 016003 (2000)

https://doi.org/10.1103/PhysRevD.62.016003

A.K. Garding and D. Lai, Rept. Prog. Phys. 69, 2631 (2006).

https://doi.org/10.1088/0034-4885/69/9/R03

K.E. Kunze, e-print ArXiv: 0710.2435 (2007).

https://doi.org/10.1055/s-2007-968652

E. Jacopini and E. Zavatinni, Phys. Lett. B 85, 151 (1979).

E.S. Fradkin and A.A. Tseytlin, Phys. Lett. B 163, 123 (1985)

https://doi.org/10.1016/0370-2693(85)90205-9

A.A. Tseytlin, e-print ArXiv: hep-th/9908105 (1999).

G.W. Gibbons and C.A.R. Herdeiro, Phys. Rev. D 63, 064006 (2001).

https://doi.org/10.1103/PhysRevD.63.064006

R.G. Leigh, Mod. Phys. Lett. A 4, 2767 (1989).

https://doi.org/10.1142/S0217732389003099

G. Boillàt, J. Math. Phys. 11, 941 (1970).

https://doi.org/10.1016/S0040-4039(01)97872-4

E. Bessel-Hagen, Math. Ann. 84, 258 (1921)

https://doi.org/10.1007/BF01459410

B.F. Plybon, Amer. J. Phys. 42, 998 (1974).

https://doi.org/10.1119/1.1987911

E. Noether, Nachr. Ges. G"{ottingen 2, 235 (1918).

W.I. Fushchych and A.G. Nikitin, Symmetries of Maxwell Equations (Reidel, Dordrecht, 1987)

https://doi.org/10.1007/978-94-009-3729-1

W.I. Fushchych and A.G. Nikitin, Symmetries of the Equations of Quantum Mechanics (New York, Alberton Press, 1994)

W.I.~Fushchych and A.G. Nikitin, J. Phys. A 25, L231 (1992).

https://doi.org/10.1088/0305-4470/25/5/004

S.C. Anco and J. Pohjanpelto, Acta Appl. Math. 69, 285 (2002).

https://doi.org/10.1023/A:1014263903283

G.W. Gibbons and D.A. Rashed, Nucl. Phys. Â 454, 185 (1995).

https://doi.org/10.1016/0550-3213(95)00409-L

F. Margi, J. Math. Phys. 19, 1115 (1978); Nuovo Cim. B 34, 334 (1976).

https://doi.org/10.1007/BF02728612

F. Margi, C. Morosi, and O. Ragnico, Commun. Math. Phys. 99, 115 (1985).

https://doi.org/10.1007/BF01466596

T.A. Morgan and D.W. Joseph, Nuovo. Cim. 39, 494 (1965)

https://doi.org/10.1007/BF02735819

W.I. Fushchich, I.Yu. Krivsky, and V.M. Simulik, Nuovo Cim. B 103, 423 (1989).

https://doi.org/10.1007/BF02874313

H. Pagels and E. Tomboulis, Nucl. Phys. B 143, 485 (1978).

https://doi.org/10.1016/0550-3213(78)90065-2

V. Hassaine and C. Martinez, Phys. Rev. D 75, 027502 (2007).

E. D'Hoker and R. Jackiw, Phys. Rev. D 26, 3517 (1982).

https://doi.org/10.1103/PhysRevD.26.3517

A.P. Ligtman, W.H. Press, R.H. Price, and S.A. Teukolsky, Problem Book in Relativity and Gravitation (Princeton Univ. Press, Princeton, 1975).

E.G.B. Hohler and K. Olaussen, Mod. Phys. Lett. A 8, 3377 (1993).

https://doi.org/10.1142/S0217732393003809

Downloads

Published

2022-02-13

How to Cite

Batsula, O. (2022). Local Conservation Laws in a Nonlinear Electrodynamics. Ukrainian Journal of Physics, 56(5), 416. https://doi.org/10.15407/ujpe56.5.416

Issue

Section

Fields and elementary particles