Bend-Imitating Theory and Electron Scattering in Sharply-bent Quantum Nanowires

Authors

  • O.O. Vakhnenko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.7.669

Keywords:

-

Abstract

The concept of bend-imitating description as applied to the one-electron quantum mechanics in sharply-bent ideal electron waveguides and its development into a self-consistent theory are presented. In general, the theory allows one to model each particular circular-like bend of a continuous quantum wire as some specific multichannel scatterer being point-like in the longitudinal direction. In an equivalent formulation, the theory gives rise to rather simple matching rules for the electron wave function and its longitudinal derivative affecting only the straight parts of a wire and thereby permitting one to bypass a detailed quantum mechanical consideration of elbow domains. The proposed technique is applicable to the analytical investigation of spectral and transport properties related to the ideal sharply-bent 3D wire-like structures of fixed cross-section and is adaptable to the 2D wire-like structures, as well as to the wire-like structures in the magnetic field perpendicular to the wire bending plane. In the framework of bend-imitating approach, the investigation of the electron scattering in a doubly-bent 2D quantum wire with S-like bend has been made, and the explicit dependences of the transmission and reflection coefficients on geometrical parameters of a structure, as well as on the electron energy, have been obtained. The total elimination of the mixing between the scattering channels of a S-like bent quantum wire is predicted.

References

B.J. van Wees, H. van Houten, C.W.J. Beenakker, J.G. Williamson, L.P. Kouwenhoven, D. van der Marel, and C.T. Foxon, Phys. Rev. Lett. 60, 848 (1988).

https://doi.org/10.1103/PhysRevLett.60.848

D.A. Wharam, T.J. Thornton, R. Newbury, M. Pepper, H. Ahmed, J.E.F. Frost, D.G. Hasko, D.C. Peacock, D.A. Ritchie, and G.A.C. Jones, J. Phys. C 21, L209 (1988).

https://doi.org/10.1088/0022-3719/21/8/002

J.C. Wu, M.N. Wybourne, W. Yindeepol, A. Weisshaar, and S.M. Goodnick, Appl. Phys. Lett. 59, 102 (1991).

https://doi.org/10.1063/1.105558

G. Kirczenow, Phys. Rev. B 39, 10452 (1989).

https://doi.org/10.1103/PhysRevB.39.10452

F. Sols and M. Macucci, Phys. Rev. B 41, 11887 (1990).

https://doi.org/10.1103/PhysRevB.41.11887

C.S. Lent, Appl. Phys. Lett. 56, 2554 (1990).

https://doi.org/10.1063/1.102885

K. Vacek, H. Kasai, and A. Okiji, J. Phys. Soc. Japan 61, 27 (1992).

https://doi.org/10.1143/JPSJ.61.27

K. Vacek, A. Okiji, and H. Kasai, Phys. Rev. B 47, 3695 (1993).

https://doi.org/10.1103/PhysRevB.47.3695

K.-F. Berggren and Zhen-Li Ji, Phys. Rev. B 47, 6390 (1993).

https://doi.org/10.1103/PhysRevB.47.6390

R.L. Schult, D.G.Ravenhall, and H.W. Wyld, Phys. Rev. B 39, 5476 (1989).

https://doi.org/10.1103/PhysRevB.39.5476

T. Kakuta, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Phys. Rev. B 43, 14321 (1991).

https://doi.org/10.1103/PhysRevB.43.14321

Y. Takagaki and D.K. Ferry, Phys. Rev. B 44, 8399 (1991).

https://doi.org/10.1103/PhysRevB.44.8399

Yu. B. Gaididei, L.I. Malysheva, and A.I. Onipko, Phys. stat. sol. (b) 172, 667 (1992).

https://doi.org/10.1002/pssb.2221720217

Yu. B. Gaididei, L.I. Malysheva, and A.I. Onipko, J. Phys.: Condens. Matter 4, 7103 (1992).

https://doi.org/10.1088/0953-8984/4/34/009

P. Exner, P. Šeba, and P. Št'oviček, Czech. J. Phys. B 39, 1181 (1989).

https://doi.org/10.1007/BF01605319

C.S. Lent and M. Leng, J. Appl. Phys. 70, 3157 (1991).

https://doi.org/10.1063/1.349297

K.-F. Berggren and Zhen-Li Ji, Phys. Rev. B 43, 4760 (1991).

https://doi.org/10.1103/PhysRevB.43.4760

Zhen-Li Ji and K.-F. Berggren, Phys. Rev. B 45, 6652 (1992).

https://doi.org/10.1103/PhysRevB.45.6652

H. Wu and D.W.L. Sprung, Phys. Rev. B 47, 1500 (1993).

https://doi.org/10.1103/PhysRevB.47.1500

J.P. Carini, J.T. Londergan, K. Mullen, and D.P. Murdock, Phys. Rev. B 48, 4503 (1993).

https://doi.org/10.1103/PhysRevB.48.4503

Yu. A. Klimenko and A.I. Onipko, Low Temp. Phys. 20, 721 (1994).

M. Andrews and C.M. Savage, Phys. Rev. A 50, 4535 (1994).

https://doi.org/10.1103/PhysRevA.50.4535

M.V. Moskalets, Low Temp. Phys. 23, 235 (1997).

https://doi.org/10.1063/1.593356

Y. Takagaki and D.K. Ferry, Phys. Rev. B 45, 6715 (1992).

https://doi.org/10.1103/PhysRevB.45.6715

T. Kawamura and J.P. Leburton, Phys. Rev. B 48, 8857 (1993).

https://doi.org/10.1103/PhysRevB.48.8857

Y. Meir and N.S. Wingreen, Phys. Rev. Lett. 68, 2512 (1992).

https://doi.org/10.1103/PhysRevLett.68.2512

T. Sakamoto, Y. Takagaki, K. Gamo, S. Namba, S. Takaoka, and K. Murase, Solid State Commun. 80, 535 (1991).

https://doi.org/10.1016/0038-1098(91)90067-6

A. Mosk, Th.M. Nieuwenhuizen, and C. Barnes, Phys. Rev. B 53, 15914 (1996).

https://doi.org/10.1103/PhysRevB.53.15914

Y. Takagaki and D.K. Ferry, J. Phys.: Condens. Matter 4, 10421 (1992).

https://doi.org/10.1088/0953-8984/4/50/030

I. Zozulenko, J. Phys.: Condens. Matter 6, 5507 (1994).

https://doi.org/10.1088/0953-8984/6/28/023

O.O. Vakhnenko, Phys. Lett. A 231, 419 (1997).

https://doi.org/10.1016/S0375-9601(97)00327-7

O.O. Vakhnenko, Phys. Lett. A 249, 349 (1998).

https://doi.org/10.1016/S0375-9601(98)00814-7

P. Exner and P. Seba, J. Math. Phys. 30, 2574 (1989).

https://doi.org/10.1063/1.528538

J. Goldstone and R.L. Jaffe, Phys. Rev. B 45, 14100 (1992).

https://doi.org/10.1103/PhysRevB.45.14100

O.O. Vakhnenko and Yu. B. Gaididei, Ukr. Fiz. Zh. 38, 906 (1993).

Yu. B. Gaididei and O.O. Vakhnenko, J. Phys.: Condens. Matter 6, 3229 (1994).

https://doi.org/10.1088/0953-8984/6/17/012

V.M. Babich and V.S. Buldyrev, Short-Wavelength Diffraction Theory. Asymptotic Methods (Springer, Berlin, 1991).

https://doi.org/10.1007/978-3-642-83459-2

V.V. Borisov, Nonstationary Fields in Waveguides (LGU, Leningrad, 1991) (in Russian).

A.K. Hobbs and W.L. Kath, IMA J. Appl. Math. 44, 197 (1990).

https://doi.org/10.1093/imamat/44.3.197

S. Flügge, Practical Quantum Mechanics I (Springer, Berlin, 1971).

https://doi.org/10.1007/978-3-642-61995-3

F.M. Peeters and O. Hipólito, Brazilian J. Phys. 22, 183 (1992).

S. Datta, Electronic Transport in Mesoscopic Systems (Cambridge Univ. Press, Cambridge, 1995).

https://doi.org/10.1017/CBO9780511805776

T.J. Thornton, M. Pepper, H. Ahmed, D. Andrews, and G.J. Davies, Phys. Rev. Lett. 56, 1198 (1986).

https://doi.org/10.1103/PhysRevLett.56.1198

G. Bernstein and D.K. Ferry, J. Vac. Sci. Technol. B 5, 964 (1987).

https://doi.org/10.1116/1.583699

A. Shailos, J.P. Bird, M.P. Lilly, J.L. Reno, and J.A. Simmons, J. Phys.: Condens. Matter 18, 3277 (2006).

https://doi.org/10.1088/0953-8984/18/12/009

A.S. Davydov, Quantum Mechanics (Pergamon Press, Oxford, 1976).

O.O. Vakhnenko, Ukr. Fiz. Zh. 39, 745 (1994).

O.O. Vakhnenko, Phys. Rev. B 52, 17386 (1995).

https://doi.org/10.1103/PhysRevB.52.17386

O.O. Vakhnenko, Phys. Lett. A 211, 46 (1996).

https://doi.org/10.1016/0375-9601(95)00946-9

C. Gorria, Yu.B. Gaididei, M.P. Soerensen, P.L. Christiansen, and J.G. Caputo, Phys. Rev. B 69, 134506 (2004).

https://doi.org/10.1103/PhysRevB.69.134506

Yu.B. Gaididei, P.L. Christiansen, P.G. Kevrekidis, H. Büttner, and A.R. Bishop, New J. Phys. 7, 52 (2005).

https://doi.org/10.1088/1367-2630/7/1/052

Yu.B. Gaididei, Eur. Phys. J. Special Topics 147, 153 (2007).

https://doi.org/10.1140/epjst/e2007-00207-7

Downloads

Published

2022-02-09

How to Cite

Vakhnenko, O. (2022). Bend-Imitating Theory and Electron Scattering in Sharply-bent Quantum Nanowires. Ukrainian Journal of Physics, 56(7), 669. https://doi.org/10.15407/ujpe56.7.669

Issue

Section

Nanosystems