Impact of Amphiphilic Nanostructures on Formation and Rheology of Interfacial Layers and on Foam Film Drainage

Authors

  • D. Arabadzhieva Institute of Physical Chemistry, Bulgarian Academy of Sciences
  • P. Tchoukov Institute of Physical Chemistry, Bulgarian Academy of Sciences
  • E. Mileva Institute of Physical Chemistry, Bulgarian Academy of Sciences
  • R. Miller Max Planck Institute of Colloids and Interfaces
  • B. Soklev Institute of Physical Chemistry, Bulgarian Academy of Sciences

DOI:

https://doi.org/10.15407/ujpe56.8.801

Keywords:

-

Abstract

The aim of the present studies is to clarify how the surfactant adsorption layer properties are related to the course of the drainage parameters of microscopic foam films in the special case of aqueous solutions containing premicellar amphiphilic nanostructures. The scope of the research covers the adsorption dynamics, construction of equilibrium adsorption isotherms, surface rheology of interfacial layers, and foam film drainage kinetics. It is established that, in the premicellar domain, there are concentration intervals, where the considerable irregularities of adsorption layer
properties are observed: several plateau regions in the surface tension isotherms, unusual changes of the surface rheological characteristics, etc. The systematic investigation of the drainage of foam films obtained from these solutions show that the dependences of basic kinetic parameters of the films on the amphiphile concentration run in synchrony with changes in the adsorption layer properties. Thus, the presence of smaller loose aggregates (premicelles) plays a significant role for the kinetic stability of films. The importance of this research is related to
providing a better insight into the initial stages of self-assembling phenomena and into the factors determining the
drainage and the stability of thin liquid films. The results have implications for the understanding and the correct prediction of properties of foam systems.

References

D. Exerowa and A. Scheludko, Bull. Inst. Phys. Chem. 3, 79 (1963).

D. Exerowa and P. Kruglyakov, Foam and Foam Films (Elsevier, Amsterdam, 1998).

A. Nikolov, G. Martynov, D. Exerowa, J. Colloid Interface Sci. 81, 116 (1981).

https://doi.org/10.1016/0021-9797(81)90308-8

E. Mileva and D. Exerowa, in Emulsions, Foams and Thin Films edited by K. Mittal and P. Kumar (Dekker, New York, 2000), p. 263.

P. Tchoukov, E. Mileva, and D. Exerowa, Langmuir 19, 1215 (2003).

https://doi.org/10.1021/la020713q

E. Mileva and D. Exerowa, Adv. Colloid Interface Sci. 100-102, 547 (2003).

https://doi.org/10.1016/S0001-8686(02)00070-2

P. Tchoukov, E. Mileva, and D. Exerowa, Colloids Surf. A 238, 19 (2004).

https://doi.org/10.1016/j.colsurfa.2004.02.026

E. Mileva, P. Tchoukov, and D. Exerowa, Adv. Colloid Interface Sci. 114-115, 47 (2005).

https://doi.org/10.1016/j.cis.2004.12.002

E. Mileva and P. Tchoukov, in Colloid Stability - The Role of Surface Forces, Colloid and Interface Series, Vol. 1, edited by Th. Tadros (WILEY-VCH, Weinheim, 2007), p. 187.

E. Mileva and D. Exerowa, Colloids Surf. A 149, 207 (1999).

https://doi.org/10.1016/S0927-7757(98)00310-0

E. Mileva, D. Exerowa, and P. Tchoukov, Colloids Surf A 186, 83 (2001).

https://doi.org/10.1016/S0927-7757(01)00486-1

E. Mileva and D. Exerowa, Curr. Opin. Colloid Interface Sci. 13, 120 (2008).

https://doi.org/10.1016/j.cocis.2007.11.002

A. Scheludko, Adv. Colloid Interface Sci. 1, 391 (1967).

https://doi.org/10.1016/0001-8686(67)85001-2

V. Bergeron and C.Radke, Langmuir 8, 3020 (1992).

https://doi.org/10.1021/la00048a028

P. Heinhg, C. Belttran, and D. Langevin, Phys. Rev. E 73, 051607 (2006).

D. Henderson, A. Trokhymchuk and D. Wasan, in Emulsions: Structure, Stability and Interactions, Chapter 7, edited by D. Petsev (Elsevier, New York, 2004) p. 259.

https://doi.org/10.1016/S1573-4285(04)80009-7

A. Trokhymchuk, D. Henderson, A. Nikolov, and D. Wasan, Phys. Rev. E 64, 012401 (2001).

https://doi.org/10.1103/PhysRevE.64.012401

G. Loglio, P. Pandolfini, R. Miller, A. Makievski, F. Ravera, M. Ferrari, and L. Liggieri, in Novel Methods to Study Interfacial Layers, edited by D. Möbius and R. Miller (Elsevier, Amsterdam, 2001), p. 439.

https://doi.org/10.1016/S1383-7303(01)80038-7

V. Fainerman, V. Kovalchuk, M. Leser, and R. Miller, in Colloid Stability - The Role of Surface Forces, Colloid and Interface

Series, Vol. 1, edited by Th. Tadros (WILEY-VCH, Weinheim, 2007), p. 307.

A. Scheludko and A. Nikolov, Coll. Polym. Sci. 253, 404 (1975).

https://doi.org/10.1007/BF01382159

I. Ivanov, D. Dimitrov, and B. Radoev, Colloid J. 41, 36 (1979).

I. Ivanov, Pure Appl. Chem. 52, 1241 (1980).

https://doi.org/10.1351/pac198052051241

Downloads

Published

2022-02-09

How to Cite

Arabadzhieva, D., Tchoukov, P., Mileva, E., Miller, R., & Soklev, B. (2022). Impact of Amphiphilic Nanostructures on Formation and Rheology of Interfacial Layers and on Foam Film Drainage. Ukrainian Journal of Physics, 56(8), 801. https://doi.org/10.15407/ujpe56.8.801

Issue

Section

Soft matter