Two-Channel Gettering of Recombination-Active Impurity in Polycrystalline Solar Silicon

Authors

  • V.G. Litovchenko V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • V.M. Naseka V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine
  • A.A. Evtukh V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.1.73

Keywords:

-

Abstract

The features of the recombination-active impurity gettering in polycrystalline silicon have been studied. The research method included the formation of a porous silicon layer 0.5–2 μm in thickness on the backside of a silicon wafer, the deposition of aluminum layer 0.5–1 μm in thickness, and the thermal annealing at 700–950 ºC during 30–60 min. The corresponding gettering model has been proposed, which includes the diffusion of iron atoms by means of two most probable independent channels: in the wafer bulk and along the grain boundaries. By comparing the theoretical results and experimental data, we established that 30% of gettered impurity atoms diffuse with a high rate along the grain boundaries, and 70% of them in the grain bulk.

References

C.P. Ho and F.W. Wald, Phys. Status Solidi A 68, 103 (1981).

https://doi.org/10.1002/pssa.2210680114

K.D. Glinchuk and N.M. Litovchenko, Polupr. Tekhn. Mikroelektron. 28, 3 (1978)

Optoelektron. Polupr. Tekhn. 21, 47 (1991).

https://doi.org/10.1097/00149078-199104010-00014

K.D. Glinchuk, N.M. Litovchenko, and V.Yu. Ptitsyn, Optoelektron. Polupr. Tekhn. 11, 59 (1987); 11, 66 (1987).

https://doi.org/10.1111/j.1467-7717.1987.tb00616.x

N.M. Litovchenko, Yu.V. Ptitsyn, and Z.A. Salnik, Optoelektron. Polupr. Tekhn. 13, 58 (1988).

R.V. Kibizov, N.M. Litovchenko, and A.L. Troshin, Optoelektron. Polupr. Tekhn. 23, 83 (1992).

Patent USA No. 4144099; Patent USA No. 4131487; Patent USA No. 3929529.

H.R. Huff, J. Electrochem. Soc. 126, 1142 (1979).

https://doi.org/10.1149/1.2129233

Wong-Jeung, J. Appl. Phys. Lett. 67, 416 (1995).

https://doi.org/10.1063/1.114647

P. Sana, A. Rohati, Ju. Kalejs, and R. Bell, Appl. Phys. Lett. 64, 97 (1994).

https://doi.org/10.1063/1.110880

A. Sarikov, V. Naseka, and V. Litovchenko, Phys. Status Solidi C 8, 767 (2011).

https://doi.org/10.1002/pssc.201000196

C. del Canizo and A. Luque, J. Electrochem. Soc. 147, 2685 (2000).

https://doi.org/10.1149/1.1393590

R. Khalil, V. Kveder, W. Schroter, and M. Seibt, Solid State Phenom. 108-109, 109 (2005).

https://doi.org/10.4028/www.scientific.net/SSP.108-109.109

V. Litovchenko, N. Klyui, A. Evtukh, A. Sarikov, Yu. Rassamakin et al., Solar Energy Mater. Solar Cells 72, 343 (2002).

https://doi.org/10.1016/S0927-0248(01)00182-9

V.A. Skryshevsky, A. Laugier, V.I. Strikha, and V.A. Vikulov, Mater. Sci. Eng. B 40, 54 (1996)

https://doi.org/10.1016/0921-5107(96)01572-3

O. Nichiporuk, A. Kaminski, M. Lemiti, A. Fave, S. Litvinenko, and V. Skryshevsky, Thin Solid Films 511-512, 248 (2006).

https://doi.org/10.1016/j.tsf.2005.12.053

B. Boltaks, Diffusion and Point Defects in Semiconductors (Mir, Moscow, 1987).

Published

2012-01-30

How to Cite

Litovchenko В., Naseka В., & Evtukh А. (2012). Two-Channel Gettering of Recombination-Active Impurity in Polycrystalline Solar Silicon. Ukrainian Journal of Physics, 57(1), 73. https://doi.org/10.15407/ujpe57.1.73

Issue

Section

Solid matter