Optical Polarization Anisotropy, Intrinsic Stark Effect and Coulomb Effects on the Lasing Characteristics of [0001]-Oriented GaN/Al0.3Ga0.7N Quantum Wells

Authors

  • L.O. Lokot V.E. Lashkaryov Institute of Semiconductor Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.1.12

Keywords:

-

Abstract

We present a theoretical investigation of space separated electron and hole distributions, which consists in the self-consistent solving of the Schrödinger equations for electrons and holes and the Poisson equation. The results are illustrated for the\linebreak GaN/Al0.3Ga0.7N quantum well. The optical gain spectrum in a [0001]-oriented GaN/Al0.3Ga0.7N quantum well in the ultraviolet region is calculated. It is found that both the matrix elements of optical transitions from the heavy hole band and the optical gain spectrum have only the strict x (or y) light polarization. We present studies of the influence of the confinement of wave functions on the optical gain which implicitly depends on the built-in electric field calculated to be 2.3 MV/cm. Whereas the structures with narrow well widths exhibit the usual development of the light gain maximum almost without shifting the spectral region, a significant blueshift of the gain maximum is found with increase in the plasma density for wider quantum wells. This blueshift is ascribed to the interplay between the screening of a strain-induced piezoelectric field and the bandstructure. A large Sommerfeld or Coulomb enhancement is present in the quantum well.

References

S. Nakamura and G. Fasol, The Blue Laser Diode (Springer, Berlin, 1997)

https://doi.org/10.1007/978-3-662-03462-0

R.L. Aggarwal, P.A. Maki, Z.-L. Liau, and I. Melngailis, J. Appl. Phys. 79, 2148 (1996)

https://doi.org/10.1063/1.361044

S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku, and Y. Sugimoto, Jpn. J. Appl. Phys. 1 35, L74 (1996)

https://doi.org/10.1143/JJAP.35.L74

S. Nakamura, J. Vac. Sci. Technol. A 13, 705 (1995).

https://doi.org/10.1116/1.588177

N. Savage, Nature Photonics 1, 83 (2007).

https://doi.org/10.1038/nphoton.2006.95

A. Khan, K. Balakrishnan, and T. Katona, Nature Photonics 2, 77 (2008).

https://doi.org/10.1038/nphoton.2007.293

Y. Taniyasu, M. Kasu, and T. Makimoto, Nature Lett. 441, 325 (2006).

https://doi.org/10.1038/nature04760

A.H. Mueller, M.A. Petruska, M. Achermann, D.J. Werder, E.A. Akhadov, D.D. Koleske, M.A. Hoffbauer, and V.I. Klimov, NanoLetters 5, 1039 (2005).

https://doi.org/10.1021/nl050384x

T. Wang, S. Wu, K.B. Lee, J. Bai, P.J. Parbrook, R.J. Airey, Q. Wang, G. Hill, F. Ranalli, and A.G. Gullis, Appl. Phys. Lett. 89, 081126 (2006).

https://doi.org/10.1063/1.2338784

B.F. Chu-Kung, M. Feng, G. Walter, N. Holonyak, jr., T. Chung, J. -H. Ryou, J. Limb, D. Yoo, S.-C. Shen, R.D. Dupuis, D. Keogh, and P.M. Asbeck, Appl. Phys. Lett. 89, 082108 (2006).

https://doi.org/10.1063/1.2336619

H. Hirayama, J. Appl. Phys. 97, 091101 (2005).

https://doi.org/10.1063/1.1899760

T. Asano, M. Takeya, T. Mizuno, S. Ikeda, K.K. Shibuya, T. Hino, S. Uchida, and M. Ikeda, Appl. Phys. Lett. 80, 3497 (2002).

https://doi.org/10.1063/1.1478157

S.-N. Lee, S.Y. Cho, H.Y. Ryu, J.K. Son, H.S. Paek, T. Jang, K.K. Choi, K.H. Ha, M.H. Yang, O.H. Nam, Y. Park, and E. Yoon, Appl. Phys. Lett. 88, 111101 (2006).

https://doi.org/10.1063/1.2185251

L.L. Gaddard, S.R. Bank, M.A. Wistey, H.B. Yuen, Z. Rao, and J.S. Harris, jr., J. Appl. Phys. 97, 083101 (2005).

https://doi.org/10.1063/1.1873035

E. Feltin, D. Simeonov, J.-F. Carlin, R. Butte, and N. Grandjean, Appl. Phys. Lett. 90, 021905 (2007).

https://doi.org/10.1063/1.2429027

H. Yoshida, Y. Yamashita, M. Kuwabara, and H. Kan, Nature Photonics 2, 551 (2008).

https://doi.org/10.1038/nphoton.2008.135

W. Chow, M. Kira, and S.W. Koch, Phys. Rev. B 60, 1947 (1999).

https://doi.org/10.1103/PhysRevB.60.1947

S.L. Chuang, J. Quantum Electron. 32, 1791 (1996).

https://doi.org/10.1109/3.538786

W.W. Chow and M. Kneissl, J. Appl. Phys. 98, 114502 (2005).

https://doi.org/10.1063/1.2128495

J. Wang, J.B. Jeon, Yu.M. Sirenko, and K.W. Kim, Photon. Techn. Lett. 9, 728 (1997).

https://doi.org/10.1109/68.584971

E.I. Rashba, Sov. Phys. Solid State 1, 368 (1959)

E.I. Rashba and V.I. Sheka, ibid, 162 (1959)

G.E. Pikus, Sov. Phys. JETP 14, 898 (1962).

G.L. Bir and G.E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, New York, 1974).

P.Y. Yu and M. Cardona, Fundamentals of Semiconductors (Springer, Berlin, 1996).

Yu.M. Sirenko, J.-B. Jeon, K.W. Kim, M.A. Littlejohn, and M.A. Stroscio, Phys. Rev. B 53, 1997 (1996).

https://doi.org/10.1103/PhysRevB.53.1997

R.G. Banal, M. Funato, and Y. Kawakami, Phys. Rev. B 79, 121308(R) (2009).

https://doi.org/10.1103/PhysRevB.79.121308

L.D. Landau and E.M. Lifshitz, Quantum Mechanics (Pergamon Press, Oxford, 1977).

G. Bastard, E.E. Mendez, L.L. Chang, and L. Esaki, Phys. Rev. B 28, 3241 (1983).

https://doi.org/10.1103/PhysRevB.28.3241

I. Vurgaftman, J.R. Meyer, and L.R. Ram-Mohan, J. Appl. Phys. 89, 5815 (2001).

https://doi.org/10.1063/1.1368156

Semiconductors, edited by O. Madelung (Springer, Berlin, 1991); W. Shan, T.J. Schmidt, X.H. Yang, S.J. Hwang, J.J. Song, and B. Goldenberg, Appl. Phys. Lett. 66, 985 (1995).

https://doi.org/10.1063/1.113820

Yu.M. Sirenko, J.-B. Jeon, B.C. Lee, K.W. Kim, M.A. Littlejohn, M.A. Stroscio, and G.I. Iafrate, Phys. Rev. B 55, 4360 (1997).

https://doi.org/10.1103/PhysRevB.55.4360

S.L. Chuang and C.S. Chang, Phys. Rev. B 54, 2491 (1996).

https://doi.org/10.1103/PhysRevB.54.2491

M. Suzuki, T. Uenoyama, and A. Yanase, Phys. Rev. B 52, 8132 (1995).

https://doi.org/10.1103/PhysRevB.52.8132

S.L. Chuang, C.S. Chang, and A. Yanase, Phys. Rev. B 54, 2491 (1996).

https://doi.org/10.1103/PhysRevB.54.2491

V.V. Mitin, V.A. Kochelap, and M.A. Stroscio, Quantum Heterostructures (Cambridge Univ. Press, New York, 1999).

L.O. Lokot, Semicon. Phys. Quantum Electron. Optoelectron. 11, 364 (2008)

https://doi.org/10.15407/spqeo11.04.364

L.O. Lokot, Ukr. Fiz. Zh. 54, 964 (2009).

M. Lindberg and S.W. Koch, Phys. Rev. B 38, 3342 (1988).

https://doi.org/10.1103/PhysRevB.38.3342

W.W. Chow, S.W. Koch, and M. Sargent III, Semiconductor Laser Physics (Springer, New York, 1994).

https://doi.org/10.1007/978-3-642-61225-1

H. Haug and S. Schmitt-Rink, Prog. Quant. Electr. 9, 3 (1984).

https://doi.org/10.1016/0079-6727(84)90026-0

Published

2012-01-30

How to Cite

Lokot Л. (2012). Optical Polarization Anisotropy, Intrinsic Stark Effect and Coulomb Effects on the Lasing Characteristics of [0001]-Oriented GaN/Al0.3Ga0.7N Quantum Wells. Ukrainian Journal of Physics, 57(1), 12. https://doi.org/10.15407/ujpe57.1.12

Issue

Section

Optics, lasers, and quantum electronics