Category of Vilenkin−Kuznetsov−Smorodinsky−Smirnov Trees


  • S.S. Moskaliuk Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine
  • N.M. Moskaliuk Uzhgorod National University





First, we briefly review the definitions and the basic properties of operads and trees. There are many useful types of operads, and each type is determined by the choice of two categories: basic symmetric monoidal category (C, □), which supports the classical linear operads, and a category of graphs Γ reflecting the combinatorics of operadic data and axioms. From this viewpoint, the specific operad is a functor Γ → C. Second, our aim is the construction of the category of Vilenkin–Kuznetsov–Smorodinsky–Smirnov (VKSS) trees, which contains VKSS-trees as objects and morphisms generated by a rotation of the n-dimensional space and transforming functions of VKSS-trees.


S. Mac Lane, Categories for the Working Mathematician (Springer, Berlin, 1998).

Y.I. Manin, Frobenius Manifolds, Quantum Cohomology, and Moduli Spaces (Amer. Math. Soc., Providence, RI, 1999).

T. Leinster, Higher Operads, Higher categories (Cambridge Univ. Press, Cambridge, 2004).

M. Markl, Operads and PROPs, Preprint math/0601129 (2006).

M. Aguiar and F. Sottile, Structure of the Loday-Ronco Hopf Algebra of Trees, Preprint math.CO/0409022 (2004).

S.S. Moskaliuk, in Proceedings of the XVIth International Hutsulian Workshop "Symmetry, Cosmology and Categorification" (TIMPANI, Kyiv, 2008), p. 1.

G.I. Kuznetsov, S.S. Moskaliuk, Yu.F. Smirnov, and V.P. Shelest, Graphical Theory of Representations of Orthogonal and Unitary Groups and Its Physical Applications (Naukova Dumka, Kiev, 1992) (in Russian).

N.A. Gromov, S.S. Moskaliuk, and Yu.F. Smirnov, The Tree, Contractions and Analytical Continuation Methods in the Theory of Representations of Classical Groups and Quantum Algebras (Naukova Dumka, Kiev, 1993) (in Russian).

G.I. Kuznetsov, S.S. Moskaliuk, and Yu.F. Smirnov, in Proceedings of the XIth International Gutsulian Workshop "Group Theoretical Methods in Physics", October 25-31, 1992, Rakhiv, Ukraine (Hadronic Press, Palm Harbor, 1995), p. 23.

G.I. Kuznetsov and S.S. Moskaliuk, Hadr. J. Suppl. 15, 349 (2000).

G.I. Kuznetsov and S.S. Moskaliuk, Hadr. J. 24, 17 (2001).

S.S. Moskaliuk and Yu.F. Smirnov, Hadr. J. 24, 129 (2001).

S.S. Moskaliuk and Yu.F. Smirnov, Hadr. J. 27, 399 (2004).

M. Moshinsky and C. Quesne, J. Math. Phys. 11, 1631 (1970).

S.S. Moskaliuk, From Cayley-Klein Groups to Categories (TIMPANI, Kyiv, 2006).

G.M. Ziegler, Lectures on Polytopes (Springer, New York, 1995).

R.P. Stanley, Enumerative Combinatorics (Cambridge Univ. Press, Cambridge, 1999).

E. Getzler and M.M. Kapranov, in Geometry, Topology and Physics, for Raoul Bott, edited by S.-T. Yau (Intern. Press, Boston, 1995), p. 167.

M. Kontsevich and Yu. Manin, Comm. Math. Phys. 164, 525 (1994).

G. Segal, Inst. des Hautes Études Sci. Publ. Mathém. 34, 105 (1968).

P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory (Springer, Berlin, 1967).

J.D. Stasheff, Trans. Amer. Math. Soc. 108, 275 (1963).

R. Gordon, A.J. Power, and R. Street, Coherence for Tricategories, Memoirs of the AMS 117, No. 558 (1995).

I.M. Gel'fand and M.L. Tseitlin, Dokl. Akad. Nauk SSSR 71, 1017 (1950).

N.Ya. Vilenkin, G.I. Kuznetsov, and Ya.A. Smorodinsky, Yad. Fiz. 2, 906 (1965).

G.I. Kuznetsov and Ya.A. Smorodinsky, Pis'ma Zh. Eksp. Teor. Fiz. 22, 378 (1975).

G.I. Kuznetsov and Ya.A. Smorodinsky, T-coefficients and 6j-symbols, Preprint (Inst. Atom. Energy, Moscow, 1976) (in Russian).

D.A. Varshalovich, A.N. Moskalev, V.K. Khersonskii, Quantum Theory of Angular Momentum (World Sci., Singapore, 1988).




How to Cite

Moskaliuk, S., & Moskaliuk, N. (2012). Category of Vilenkin−Kuznetsov−Smorodinsky−Smirnov Trees. Ukrainian Journal of Physics, 57(4), 426.



General problems of theoretical physics

Most read articles by the same author(s)