Theoretical Studies of Rare-Earth Nuclei Leading to 50Sn-Daughter Products and the Associated Shell Effects

Authors

  • S. Kumar Department of Physics, Chitkara University

DOI:

https://doi.org/10.15407/ujpe57.5.493

Keywords:

-

Abstract

Cluster decays of rare-earth nuclei are studied with regard for neutron magic shells for 50Sn nucleus as a daughter product always. The 100Sn and 132Sn radioactivities are studied to find the most probable cluster decays and the possibility, if any, of new neutron shells. For a wide range of parent nuclei considered here (from Ba to Pt), 12C and 78Ni from the 112Ba and 210Pt parents, respectively, are predicted to be the most probable clusters (minimum decay half-life) referring to100Sn and 132Sn daughters. The 22Mg decay of 122Sm is indicated at the second best possibilty for the 100Sn-daughter decay. In addition to these well-known magic shells (Z = 50, N = 50 and 82), a new magic shell at Z = 50,  N = 66 (116Sn daughter) is indicated for the 64Ni decay from the 180Pt parent.

References

H.J. Rose and G.A. Jones, Nature (London) 307, 245 (1984).

https://doi.org/10.1038/307245a0

R.K. Gupta and W. Greiner, Int. J. Mod. Phys. E 3, 335 (1994, Suppl.).

https://doi.org/10.1142/S0218301394000127

R. Bonetti and A. Guglielmetti, in Heavy Elements and Related New Phenomena, edited by W. Greiner and R.K. Gupta (World Scientific, Singapore, 1999), Vol. II, p. 643.

R. Bonetti and A. Guglielmetti, Roman. Rep. in Phys. 59, 301 (2007).

A. Guglielmetti et al., J. of Phys.: Confer. Series 111, 012050 (2008).

https://doi.org/10.1088/1742-6596/111/1/012050

A. Sǎndulescu, D.N. Poenaru, and W. Greiner, Sov. J. Part. Nucl. 11, 528 (1980).

J. Maruhn and W. Greiner, Phys. Rev. Lett. 32, 548 (1974).

https://doi.org/10.1103/PhysRevLett.32.548

R.K. Gupta, W. Scheid, and W. Greiner, Phys. Rev. Lett. 35, 353 (1975).

https://doi.org/10.1103/PhysRevLett.35.353

R. Bonetti, A. Guglielmetti, V.L. Mikheev, and S.P. Tretyakova, Private communication; and to be published.

D.N. Poenaru, R. Gherghescu and W. Greiner, arxiv:1106.3271v1 (2011).

D.C. Hoffman, T.M. Hamilton, and M.R. Lane, in Nuclear Decay Modes (IOP Publishing, Bristol, 1996), Ch. 10, pp. 393-432.

D.N. Poenaru, W. Greiner, and R. Gherghescu, Phys. Rev. C 47, 2030 (1993)

https://doi.org/10.1103/PhysRevC.47.2030

D.N. Poenaru, W. Greiner, and E. Hourani, Phys. Rev. C 51, 594 (1995).

https://doi.org/10.1103/PhysRevC.51.594

S. Kumar and R.K. Gupta, Phys. Rev. C 49, 1922 (1994); 51, 1762 (1995); J. Phys. G: Nucl. Part. Phys. 22, 215 (1996).

https://doi.org/10.1088/0954-3899/22/2/006

J. Walker et al., Phys. Rev. C 84, 014319 (2011); and references therein.

S. Sarkar and M. Saha Sarkar, Phys. Rev. C 81, 064328 (2010).

https://doi.org/10.1103/PhysRevC.81.064328

Yu.Ts. Oganessian, et al., Z. Phys. A 349, 341 (1994).

https://doi.org/10.1007/BF01288988

A. Guglielmetti, et al., Phys. Rev. C 52, 740 (1995).

https://doi.org/10.1001/archneur.1995.00540320010001

A. Guglielmetti et al., Phys. Rev. C 56, R2912 (1997).

https://doi.org/10.1103/PhysRevC.56.R2912

C. Mazzocchi, et al., Phys. Lett. B 532, 29 (2002).

https://doi.org/10.1016/S0370-2693(02)01543-5

J. Gomez del Campo et al., Phys. Rev. Lett. 61, 290 (1988); J. Gomez del Campo et al., Phys. Rev. C 43, 2689 (1991); 57, R457 (1998).

Y.K. Vermani et al., Nucl. Phys. A 847, 283 (2011); J. Phys. G: Nucl. Part. Phys. 36, 105103 (2010); G37 (2010) 015105; Europhys. Lett. 85, 62001 (2009); R.K. Puri et al., Phys. Rev. C 54, R28 (1996); J. Comp. Phys. 162, 245 (2000); Phys. Rev. C 57 (1998)2744; 58, 320 (1998); J. Singh et al., Phys. Rev. C 62, 044617 (2000).

G. Audi, A.H. Wapstra, and C. Thibault, Nucl. Phys. A 729, 337 (2003).

https://doi.org/10.1016/j.nuclphysa.2003.11.003

P. Möller et al., At. Data Nucl. Data Tables 59, 185 (1995).

https://doi.org/10.1006/adnd.1995.1002

S. Kumar et al., Symp. on Nucl. Phys., Mumbai (India), Dec. 8-12, Vol. 46B.

S. Kumar et al., J. Phys. G: Nucl. Part. Phys. 36, 015110 (2009).

https://doi.org/10.1088/0954-3899/36/1/015110

S.S. Malik and R.K. Gupta, Phys. Rev. C 39, 1992 (1989).

https://doi.org/10.1103/PhysRevC.39.1992

S. Kumar and R.K. Gupta, Phys. Rev. C 55, 218 (1997).

https://doi.org/10.1103/PhysRevC.55.218

I. Dutt and R.K. Puri, Phys. Rev. C 81, 064609 (2010); and references therein.

https://doi.org/10.1103/PhysRevC.81.064608

J. Blocki, J. Randrup, W.J. Swiatecki, and C.F. Tsang, Ann. Phys. (NY) 105, 427 (1977).

https://doi.org/10.1016/0003-4916(77)90249-4

R.K. Puri et al., Phys. Rev. C 45, 1837 (1992); ibid 43, 315 (1991); ibid 47, 561 (1993); Eur. Phys. J. 23, 429 (2005); J. Phys. G. 18, 903 (1992); 18, 1533 (1992); Eur. Phys. J. A 3, 277 (1998); 8, 103 (2000); J. Phys. G. 18, 1533 (1992); Int. Mod. Phys. E 1, 269 (1992); Phys. Rev. C 51, 1568 (1995); J. Phys. G 17, 1933 (1991); S.S. Malik et. al., Pramana J. 32, 419 (1989); R.K. Puri, et al., Nucl. Phys. A 575, 733 (1994); I. Dutt et. al., Phys. Rev. C 81, 044615 (2010); 81, 064608 (2010); 81, 047601 (2010).

S. Goyal et al., Phys. Rev. C 83, 047601 (2011).

https://doi.org/10.1103/PhysRevC.83.047604

A.D. Sood et al., Phys. Rev. C 70, 034611 (2004); ibid 79, 064618 (2009); ibid C 73, 067602 (2006); ibid J. Phys. G 37, 085102 (2010).

Y. Vermani et al., Phys. Rev. C 79, 064613 (2009); S. Kumar et al., Phys. Rev. C 78, 064602 (2008); ibid 81, 014601 (2010); ibid 81, 014611 (2010); R. Chugh et al., Phys. Rev. C 82, 014603 (2010); A.D. Sood et al., Eur. Phys. J. A 30, 571 (2006).

H. Kröger and W. Scheid, J. Phys. G 6, L85 (1980). https://doi.org/10.1088/0305-4616/6/4/006

Downloads

Published

2012-05-30

How to Cite

Kumar, S. (2012). Theoretical Studies of Rare-Earth Nuclei Leading to 50Sn-Daughter Products and the Associated Shell Effects. Ukrainian Journal of Physics, 57(5), 493. https://doi.org/10.15407/ujpe57.5.493

Issue

Section

Nuclei and nuclear reactions