Study of Electrical Conductivity in WO3-doped Nonstoichiometric LiTaO3

Authors

  • M. Tahiri Physics Department, Equipe de Recherche Physique de la Matière et Modélisation, Faculty of Sci. and Techn.
  • N. Masaif Physics Department, Equipe de Recherche Physique de la Matière et Modélisation, Faculty of Sci. and Techn.
  • A. Jennane Physics Department, Equipe de Recherche Physique de la Matière et Modélisation, Faculty of Sci. and Techn.
  • E.M. Lotfi Rabat Institute, University Mohammed V-Souissi-Rabat

DOI:

https://doi.org/10.15407/ujpe57.8.834

Keywords:

-

Abstract

The results of experimental and analytical studies of the electrical conductivity for different solid solutions synthesized in a vicinity of LiTaO3 in the ternary system Li2O–Ta2O5–(WO3)2 are presented. It is shown that the electrical conductivity increases linearly with the Curie temperature. The experimental conductivity between 200 and 700 ºC was measured using an LCR bridge HP4192A on ceramics sintered at 1250 ºC. Within the theoretical approach to the defect structure analysis combined with our proposed vacancy models, the theoretical results are in a good agreement with the experimental data.

References

S.C. Abrahams and L.J. Bernstein, Phys. Chem. Solids 28, 1685 (1967).

https://doi.org/10.1016/0022-3697(67)90142-4

V.Ya. Shur, J. of Mat. Sci. 41, 199 (2006).

https://doi.org/10.1007/s10853-005-6065-7

R.S. Roth, H.S. Parker, W.S. Brower, and J.L. Waring, in Fast Ion Transport in Solids, Solid State Battery and Devices, edited by W. Van Gool (North-Holland, Amsterdam, 1973).

T. Yamada, N. Niizeki, and H. Toyoda, Jap. J. Appl. Phys. 7, 298 (1968).

https://doi.org/10.1143/JJAP.7.298B

F.I. Kozhaev, S.-A. Shwartsman, S.I. Suslova, and V.A. Sokolov, Sov. J. Opt. Technol. 45, 301 (1978).

J.A. Allemann, Y. Xia, R.E. Morriss, A.P. Wilkinson, H. Eckert, J.S. Speck, G.C. Levi, and F.F. Lange, J. Mater Res. 11, 2376 (1996).

https://doi.org/10.1557/JMR.1996.0301

A. Ballman, H.T. Levinstein, C.D. Capio, and H. Brown, J. Amer. Ceram. Soc. 50, 657 (1967).

https://doi.org/10.1111/j.1151-2916.1967.tb15022.x

R.L. Barns and J.R. Carruthers, J. Appl. Crystallogr. 3 (5), 395 (1970).

https://doi.org/10.1107/S0021889870006490

B.A. Scott and G. Burns, J. of Amer. Cer. Soc. 55 (5), 225 (1972).

https://doi.org/10.1111/j.1151-2916.1972.tb11266.x

P. Lerner, C. Legras, and J.P. Dumas, J. Cryst. Growth 3, 231 (1968).

https://doi.org/10.1016/0022-0248(68)90139-5

J. Seidel et al., Nat. Mater. 8 (3), 229 (2009).

J. Seidel et al., Phys. Rev. Lett. 105, 197603 (2010).

https://doi.org/10.1103/PhysRevLett.105.026802

S. Farokhipoor and B. Noheda, Phys. Rev. Lett. 107, 127601 (2011).

https://doi.org/10.1103/PhysRevLett.107.127601

E.A. Eliseev et al., Phys. Rev. B 83, 235313 (2011).

https://doi.org/10.1103/PhysRevB.83.235313

E.A. Eliseev et al., Phys. Rev. B 85, 045312 (2012); http://arxiv.org/abs/1108.5344.

P. Maksymovych, et al., Nano Lett. 12, 1, 209 (2012).

https://doi.org/10.1021/nl203349b

E.M. Lotfi, Thèse d'état, FSR, Univ. Med V, Rabat, Morocco (2007).

F.P. Safaryan, Phys. Lett. A 191, 191 (1999).

https://doi.org/10.1016/S0375-9601(99)00090-0

S. Jebbari, S. El Hamd, F. Bennani, A. Jennane, M. Hafid, and N. Masaif, J. Cond. Matt. 5, No. 2 (2004).

M. Tahiri, N. Masaif, E.M. Lotfi, and A. Jennane, J. Cond. Matt. 12, No. 2 (2010).

N. Masaif, S. Elhamd, S. Jebbari, A. Jennane, and F. Bennani, Chinese J. of Phys. 42, No. 5 (2004).

Downloads

Published

2012-08-30

How to Cite

Tahiri, M., Masaif, N., Jennane, A., & Lotfi, E. (2012). Study of Electrical Conductivity in WO3-doped Nonstoichiometric LiTaO3. Ukrainian Journal of Physics, 57(8), 834. https://doi.org/10.15407/ujpe57.8.834

Issue

Section

Solid matter

Most read articles by the same author(s)