Modeling of Microstructural Changes in Irradiated Systems Using the Phase Field Crystal Method

Authors

  • D.O. Kharchenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • V.O. Kharchenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • S.V. Kokhan Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine
  • I.O. Lysenko Institute of Applied Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe57.10.1069

Keywords:

-

Abstract

Microstructural changes in systems subjected to the ballistic flux action have been studied. The formation of a structure disorder under irradiation has been described using the phase field crystal method. It is found that, owing to a competition between the regular and stochastic components of the ballistic flux, spatial patterns with smeared atomic densities can be formed. The dynamics of defects during the recrystallization in such systems has been studied, and the dependence of the variation in the number of defects on the statistical properties of a ballistic flux has been analyzed. The spatial patterns formed under the action of such flux during the recrystallization are found to be stationary and resistant to low-intensity thermal fluctuations.

References

A. Onuki, Phase Transition Dynamics (Cambridge University Press, Cambridge, 2004).

V.N. Voevodin and I.M. Neklyudov, Structural-Phase State Evolution and Radiation Resistance of Structural Materials (Naukova Dumka, Kyiv, 2006) (in Russian).

B.D. Wirth, M.J. Caturla, T. Diaz de la Rubia, T. Khraishi, and H. Zbib, Nucl. Instrum. Methods B 180, 23 (2001).

https://doi.org/10.1016/S0168-583X(01)00392-5

A.G. Khachaturyan, Theory of Phase Transformations and Structure of Solid Solutions (Nauka, Moscow, 1974) (in Russian).

J. Swift and P.C. Hohenberg, Phys. Rev. A 15, 319 (1977).

https://doi.org/10.1103/PhysRevA.15.319

T.V. Ramakrishnan and M. Yussouff, Phys. Rev. E 19, 2775 (1979).

https://doi.org/10.1103/PhysRevB.19.2775

K.R. Elder, M. Katakowski, M. Haataja, and M. Grant, Phys. Rev. Lett. 88, 245701 (2002).

https://doi.org/10.1103/PhysRevLett.88.245701

P.F. Tupper and M. Grant, Europhys. Lett. 81, 40007 (2008).

https://doi.org/10.1209/0295-5075/81/40007

K.R. Elder and M. Grant, Phys. Rev. E 70, 051605 (2004).

https://doi.org/10.1103/PhysRevE.70.051605

J. Berry, M. Grant, and K.R. Elder, Phys. Rev. E 73, 031609 (2006).

https://doi.org/10.1103/PhysRevE.73.031609

Y.M. Jin and A.G. Khachaturyan, J. Appl. Phys. 100, 013519 (2006).

https://doi.org/10.1063/1.2213353

K.R. Elder, N. Provatas, J. Berry, P. Stefanovich, and M. Grant, Phys. Rev. B 75, 064107 (2007).

https://doi.org/10.1103/PhysRevB.75.064107

J. Berry, K.R. Elder, and M. Grant, Phys. Rev. E 77, 061506 (2008).

https://doi.org/10.1103/PhysRevB.77.224114

A. Jaatinen, C.V. Achim, K.R. Elder, and T. Ala-Nissila, Phys. Rev. E 80, 031602 (2009).

https://doi.org/10.1103/PhysRevE.80.031602

G. Martin, Phys. Rev. B 30, 1424 (1984).

https://doi.org/10.1103/PhysRevB.30.1424

S. Matsumara, Y. Tanaka, S. M"{uller, and C. Abromeit, J. Nucl. Mater. 239, 42 (1996).

https://doi.org/10.1016/S0022-3115(96)00431-X

R. Enrique and P. Bellon, Phys. Rev. Lett. 84, 2885 (2000).

https://doi.org/10.1103/PhysRevLett.84.2885

V.I. Dubinko, A.V. Tur, and V.V. Yanovsky, Radiat. Eff. Defects Solids 112, 233 (1990).

https://doi.org/10.1080/10420159008213049

J. Garcia-Ojalvo and J.M. Sancho, Noise in Spatially Extended Systems (Springer, New York, 1999).

https://doi.org/10.1007/978-1-4612-1536-3

A.I. Olemskoi and D.O. Kharchenko, Self-Organization of Self-Similar Complex Systems (RSD, Moscow-Izhevsk, 2007) (in Russian).

D.O. Kharchenko, V.O. Kharchenko, and A.V. Dvornichenko, Processes of Complex System Ordering (Naukova Dumka, Kyiv, 2001) (in Russian).

A.I. Olemskoi, D.O. Kharchenko, and I.A. Knyaz', Phys. Rev. E 71, 041101 (2005).

https://doi.org/10.1103/PhysRevE.71.041101

D.O. Kharchenko and A.V. Dvornichenko, Physica A 387, 5342 (2008).

https://doi.org/10.1016/j.physa.2008.05.041

D.O. Kharchenko, S.V. Kokhan, and A.V. Dvornichenko, Physica D 238, 2251 (2008).

https://doi.org/10.1016/j.physd.2008.12.005

D.O. Kharchenko, V.O. Kharchenko, I.O. Lysenko, and S.V. Kokhan, Phys. Rev. E 82, 061108 (2010).

https://doi.org/10.1103/PhysRevE.82.061108

D.O. Kharchenko, V.O. Kharchenko, and I.O. Lysenko, Phys. Scr. 83, 045802 (2011).

https://doi.org/10.1088/0031-8949/83/04/045802

R.S. Averback, T. Diaz de la Rubia, and R. Benedek, Nucl. Instrum. Methods B 33, 693 (1988).

https://doi.org/10.1016/0168-583X(88)90662-3

T. Diaz de la Rubia, R.S. Averback, and H. Hsieh, J. Mater. Res. 4, 579 (1989).

https://doi.org/10.1557/JMR.1989.0579

M.-J. Caturla, T. Diaz de la Rubia, L.A. Marques, and G.H. Gilmer, Phys. Rev. B 54, 6683 (1996).

https://doi.org/10.1103/PhysRevB.54.16683

H. Ohnogi and Y. Shiwa, Physica D 237, 3046 (2008).

https://doi.org/10.1016/j.physd.2008.06.011

A. Jaatine and T. Ala-Nissila, J. Phys. Condens. Matter 22, 205402 (2010).

https://doi.org/10.1088/0953-8984/22/20/205402

G.I. Toth, G. Tegze, T. Pusztai, G. Toth, and L. Granasy, J. Phys. Condens. Matter 22, 364101 (2010).

https://doi.org/10.1088/0953-8984/22/36/364101

D. Kharchenko, I. Lysenko, and V. Kharchenko, Physica A 389, 3356 (2010).

https://doi.org/10.1016/j.physa.2010.04.027

D.O. Kharchenko, V.O. Kharchenko, and I.O. Lysenko, Cent. Eur. J. Phys. 9, 698 (2011).

https://doi.org/10.2478/s11534-010-0076-y

E.A. Novikov, Zh. Èksp. Teor. Fiz. 20, 1290 (1965).

D.O. Kharchenko, I.O. Lysenko, and V.O. Kharchenko, Metallofiz. Noveish. Tekhn. 32, 783 (2010).

D.O. Kharchenko, I.O. Lysenko, and V.O. Kharchenko, Ukr. Fiz. Zh. 55, 1226 (2010).

D.O. Kharchenko, I.O. Lysenko, and S.V. Kokhan, Eur. Phys. J. B 76, 37 (2010).

https://doi.org/10.1140/epjb/e2010-00172-8

J. Garcia-Ojalvo, A.M. Lacasta, J.M. Sancho, and R. Toral, Europhys. Lett. 42, 125 (1998).

https://doi.org/10.1209/epl/i1998-00217-9

M. Ibanes, J. Garcia-Ojalvo, R. Toral, and J.M. Sancho, Phys. Rev. E 60, 3597 (1999).

https://doi.org/10.1103/PhysRevE.60.3597

D.O. Kharchenko, A.V. Dvornichenko, and I.O. Lysenko, Ukr. Fiz. Zh. 53, 917 (2008).

R.A. Enrique and P. Bellon, Phys. Rev. E 63, 134111 (2001).

https://doi.org/10.1103/PhysRevB.63.134111

J. Ye and P. Bellon, Phys. Rev. B 70, 094104 (2004).

J.Ye and P. Bellon, Phys. Rev. B 70, 094105 (2004).

T. Yamanaka and A. Onuki, Phys. Rev. E 77, 042501 (2008).

https://doi.org/10.1103/PhysRevE.77.042501

K. Nordlund, M. Ghaly, R.S. Averback, M. Caturla, T. Diaz de la Rubia, and J. Tarus, Phys. Rev. B 57, 7556 (1998).

https://doi.org/10.1103/PhysRevB.57.7556

D.J. Bacon, Yu.N. Osetsky, R.E. Stoller, and R.E. Voskoboinikov, J. Nucl. Mater. 323, 152 (2003).

https://doi.org/10.1016/j.jnucmat.2003.08.002

H. Qian and G.F. Mazenko, Phys. Rev. E 73, 036117 (2006).

https://doi.org/10.1103/PhysRevE.73.036117

Published

2021-12-05

How to Cite

Kharchenko, D., Kharchenko, V., Kokhan, S., & Lysenko, I. (2021). Modeling of Microstructural Changes in Irradiated Systems Using the Phase Field Crystal Method. Ukrainian Journal of Physics, 57(10), 1069. https://doi.org/10.15407/ujpe57.10.1069

Issue

Section

General problems of theoretical physics