Calculation of the Sound Velocity and the Absorption Factor in Liquids with Quasi-Spherical Molecules

  • S. Odinaev Academy of Sciences of Republic of Tajikistan
  • A. Abdurasulov M.S. Osimi Tajik Technical University
Keywords: sound velocity, sound absorption coefficient, translational and structural relaxations, friction coefficient, density, temperature, frequency

Abstract

A short review of theoretical and experimental works dealing with the research of acoustic parameters of some classical liquids and their solutions is made. On the basis of the analytical expressions obtained in the framework of molecular-kinetic theory for the sound velocity c(v) and the absorption factor a(v), as well as the choice of a model for the potential of intermolecular interaction Φ(|r|) and the radial distribution function g (|r|), the frequency dispersion of acoustic parameters for liquid N2, O2, and CH4 was numerically calculated in wide intervals of density and temperature.

References

I.G. Mikhailov and S.B. Gurevich, Usp. Fiz. Nauk 35, 1 (1948). https://doi.org/10.3367/UFNr.0035.194805a.0001

I.Z. Fisher, Akust. Zh. 3, 206 (1957).

V.K. Prokhorenko and I.Z. Fisher, Akust. Zh. 4, 204 (1958).

I.G. Mikhailov, V.A.Solovyev, and Yu.P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, Moscow, 1964) (in Russian).

Physical Acoustics. Principles and Methods, Vol. 2A: Properties of Gases, Liquids, and Solutions, edited by W.P. Mason (Academic Press, New York, 1965).

C.A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 2009). https://doi.org/10.1093/jnci/djp023

I.G. Mikhailov, V.M. Polunin, and V.A. Solovyev, Akust. Zh. 17, 103 (1971).

W. Pacceu and W. Van Dael, Physica 63, 154 (1973). https://doi.org/10.1016/0031-8914(73)90184-5

G.J. Prangsma, A.H. Alberga, and J.J. Beenakker, Physica 64, 278 (1973). https://doi.org/10.1016/0031-8914(73)90048-7

Yu.S. Manucharov and I.G. Mikhailov, Akust. Zh. 20, 288 (1974).

G.I. Kolesnikov, V.S. Starunov, and I.L. Fabelinskii, Akust. Zh. 22, 776 (1976).

B.G. Dudar' and S.A. Mikhailenko, Akust. Zh. 22, 517 (1976).

S.A. Mikhailenko and B.G. Dudar', Fiz. Nizk. Temp. 2, 93 (1976).

G.I. Zaitsev, Akust. Zh. 41, 339 (1995).

D.A. Denisov, Akust. Zh. 53, 672 (2007).

L.M. Kashaeva, L.M. Sabirov, Sh. Sidikov et al., Akust. Zh. 44, 369 (1998).

N.E. Molevich, Akust. Zh. 49, 229 (2003).

A.A. Adkhamov and S. Odinaev, Ukr. Fiz. Zh. 29, 1664 (1984).

A.A. Adkhamov, S. Odinaev, and A.A. Abdurasulov, Ukr. Fiz. Zh. 34, 1836 (1989).

S. Odinaev, Dokl. Akad. Nauk Resp. Tadzh. 41, No. 3–4, 22 (1998).

S. Odinaev and A.A. Adkhamov, Molecular Theory of Structural Relaxation and Transfer Phenomena in Liquids (Donish, Dushanbe, 1998) (in Russian).

S. Odinaev and A.A. Abdurasulov, Ukr. Fiz. Zh. 58, 827 (2013).

N.A. Smirnova, Molecular Theories of Solutions (Khimiya, Leningrad, 1987) (in Russian). http://www.ncbi.nlm.nih.gov/pubmed/PMC213934

A. Boushehri, J. Bzowski, J. Kestin, and E.A. Mason, J. Phys. Chem. Ref. Data 16, 445 (1987). https://doi.org/10.1063/1.555800

J.M. Hellemans, J. Kestin, and S.T. Ro, Physica 65, 362 (1973). https://doi.org/10.1016/0031-8914(73)90351-0

J.M. Hellemans, J. Kestin, and S.T. Ro, Physica 65, 376 (1973). https://doi.org/10.1016/0031-8914(73)90352-2

J.P. Boon, J.C. Legros, and G. Thomaes, Physica 33, 547 (1967). https://doi.org/10.1016/0031-8914(67)90203-0

G.A. Fernandez, J. Vrabec, and H. Hasse, Fluid Phase Equilibr. 221, 157 (2004). https://doi.org/10.1016/j.fluid.2004.05.011

Physics of Simple Liquids, edited by H.N.V. Temperley, J.S. Rowlinson, and G.S. Rushbrooke (North-Holland, Amsterdam, 1968).

Published
2019-01-08
How to Cite
Odinaev, S., & Abdurasulov, A. (2019). Calculation of the Sound Velocity and the Absorption Factor in Liquids with Quasi-Spherical Molecules. Ukrainian Journal of Physics, 61(1), 22. https://doi.org/10.15407/ujpe61.01.0022
Section
Soft matter