Research of the Shear and Volume Viscosity Coefficients in Multiatomic Liquids and Their Dependences on the State Parameters

  • S. Odinaev Academy of Sciences of the Republic of Tajikistan
  • A. Abdurasulov M.S. Osimi Tajik Technical University
Keywords: frequency dispersion, translational and structural relaxation, shear and volume viscosity coefficients, interaction potential, radial distribution function, liquid friction coefficient


The expressions for the shear, nS (!), and volume, nV (!), viscosity coefficients in multiatomic liquids have been obtained by solving the kinetic equations for one- and two-particle distribution functions, and their dependences on the thermodynamic state parameters have been analyzed. Numerical calculations of nS (w) and nV (w) are carried out for liquid N2, O2, CO, CO2, and CH4 in wide temperature, T, and density, p, intervals, at a fixed frequency w, and for specific choices of the intermolecular interaction potential and the radial distribution function. The validity of the law of corresponding states for viscous properties of multiatomic liquids with respect to the reduced p* and T* values is tested. The results of theoretical calculations of the isofrequency viscosity coefficients for the examined liquids are found to be in satisfactory agreement with available experimental data.


  1. I.G. Mikhailov, V.A. Solovyev, and Yu.P. Syrnikov, Fundamentals of Molecular Acoustics (Nauka, Moscow, 1964) (in Russian).

  2. Physical Acoustics. Principles and Methods, Vol. 2A: Properties of Gases, Liquids, and Solutions, edited by W.P. Mason (Academic Press, New York, 1965).

  3. Physics of Simple Liquids, edited by H.N.V. Temperley, J.S. Rowlinson, and G.S. Rushbrooke (North-Holland, Amsterdam, 1968).

  4. D.J. Naugle, J.H. Lunsford, and I.R. Singer, J. Chem. Phys. 44, 741 (1966); 45, 4669 (1966).

  5. D.S. Swyt, O.J. Havlice, and E.E. Carome, J. Chem. Phys. 47, 1199 (1966).

  6. S.A. Mikhailenko, B.G. Dudar', and V.A. Shmidt, Fiz. Nizk. Temp. 1, 224 (1975).

  7. P. Malbrunot, A. Boyer, E. Charles, and H. Abachi, Phys. Rev. A 27, 1523 (1983).

  8. I.L. Fabelinskii, Usp. Fiz. Nauk 167, 721 (1997).

  9. V.V. Belyaev, Usp. Fiz. Nauk 171, 267 (2001).

  10. A.N. Lagar'kov and V.M. Sergeev, Usp. Fiz. Nauk 125, 409 (1978).

  11. D.J. Evans, H.J.M. Hanley, and S. Hess, Physics Today 37, 26 (January 1984).

  12. D.J. Evans and G.P. Morris, Statistical Mechanics of Nonequilibrium Liquids (Academic Press, London, 1990).

  13. C.A. Croxton, Liquid State Physics: A Statistical Mechanical Introduction (Cambridge Univ. Press, Cambridge, 2009).

  14. J.O. Hirschfelder, Ch.F. Curtiss, and R.B. Bird, Molecular Theory of Gases and Liquids (Wiley, New York, 1967).

  15. S. Odinaev and Kh. Mirzoaminov, Dokl. Akad. Nauk Respubl. Tajikistan 53, 907 (2010).

  16. S. Odinaev and Kh. Mirzoaminov, Ukr. Fiz. Zh. 55, 1105 (2010).

  17. S. Odinaev, Ukr. Fiz. Zh. 56, 785 (2011).

  18. S. Odinaev, D. Akdodov, and Kh. Mirzoaminov, J. Mol. Liq. 164, 22 (2011).

  19. S. Odinaev and A.A. Adkhamov, Molecular Theory of Structural Relaxation and Transfer Phenomena in Liquids (Donish, Dushanbe, 1998) (in Russian).

  20. I.R. Yukhnovskii and M.F. Golovko, Statistical Theory of Classical Equilibrium Systems (Naukova Dumka, Kyiv, 1987) (in Russian).

  21. M.S. Wertheim, Phys. Rev. Lett. 10, 321 (1963);
    J. Math. Phys. 5, 643 (1964).

  22. J.M. Hellemans, J. Kestin, and S.T. Ro, Physica. 65, 362 (1973); 65, 376 (1973).

  23. J.P. Boon, J.C. Legros, and G. Thomaes, Physica 33, 547 (1967).

  24. W. Herreman, W. Grevendonk, and De Bock, J. Chem. Phys. 53, 185 (1970).

  25. B.G. Dudar' and S.A. Mihailenko, Akust. Zh. 22, 517 (1976).

  26. S. Odinaev, A. Abdurasulov, and Kh. Mirzoaminov, Dokl. Akad. Nauk Respubl. Tajikistan 54, 542 (2011).

  27. S.A. Mihailenko and B.G. Dudar', Fiz. Nizk. Temp. 2, 93 (1976).

How to Cite
Odinaev, S., & Abdurasulov, A. (2018). Research of the Shear and Volume Viscosity Coefficients in Multiatomic Liquids and Their Dependences on the State Parameters. Ukrainian Journal of Physics, 58(9), 827.
Soft matter