Annealing Effects on FluctuationInduced Conductivity of (Cu0.5Tl0.25Hg0.25)Ba2Ca3Cu4O12-δ, Superconductor

Authors

  • Babar Shabbir Mater. Sci. Lab., Department of Physics, Quaid-i-Azam University
  • Adnan Younis Mater. Sci. Lab., Department of Physics, Quaid-i-Azam University
  • Nawazish Ali Khan Mater. Sci. Lab., Department of Physics, Quaid-i-Azam University

DOI:

https://doi.org/10.15407/ujpe56.3.233

Keywords:

-

Abstract

In the light of the Aslamazov–Larkin theory of fluctuation-induced conductivity (FIC), the excess conductivities of as-prepared, nitrogen-post-annealed, oxygen-post-annealed, and air-post-annealed samples of (Cu0.5Tl0.25Hg0.25)Ba2Ca3Cu4O12–δ have been determined. It is observed from FIC measurements that the crossover of a three-dimensional (3D) to a two-dimensional (2D) behavior of fluctuations is shifted to higher temperatures by the post-annealing of samples in nitrogen, oxygen, and air. We have accredited this behavior to an increase in the grain size and the improved carrier concentration in the conducting CuO2 planes. In addition, it is also noted that, after the post-annealing of samples in nitrogen, oxygen, and air, the width of the three-dimensional region of fluctuations is also enlarged. Furthermore, two distinct parameters (coherence length and interplanar coupling) are also estimated by the Lawrence–Doniach equations and found to be increased by the post annealing in nitrogen, oxygen, and air.

References

H. Ihara, Y. Sekita, H. Tateai, N.A. Khan, K. Ishida, E. Harashima, T. Kojima, H. Yamamoto, K. Tanaka, Y. Tanaka, N. Terada, and H. Obara, IEEE Trans. Appl. Supercond. 9, 1551 (1999).

https://doi.org/10.1109/77.784690

R.J. Wijngaarden, D.T. Jover, and R. Griessen, Physica B 265, 128, (1999).

https://doi.org/10.1016/S0921-4526(98)01342-8

M. Karppinen and H. Yamauchi, Phil. Mag. B 79, 343 (1999).

https://doi.org/10.1080/13642819908206803

H. Yamauchi and M. Karppinen, J. Low Temp. Phys. 117, 813 (1999).

https://doi.org/10.1023/A:1022574001761

Y. Tokunaga, K. Ishida, Y. Kitaoka, K. Asayama, K. Tokiwa, A. Iyo, and H. Ihara, Phys. Rev. B 61, 9707 (2000).

H. Zhang and H. Sato, Phys. Rev. Lett. 70, 1697 (1993).

https://doi.org/10.1103/PhysRevLett.70.1697

S.H. Han, P. Lundqvist, and ¨Ö. Rapp, Physica C 282, 1571 (1997).

https://doi.org/10.1016/S0921-4534(97)00937-4

S.H. Han, I. Bryntse, J. Axn¨as, B.R. Zhao, and Ö. Rapp, Physica C 408, 679 (2004).

https://doi.org/10.1016/j.physc.2004.03.107

S.H. Han, I. Bryntse, J. Axn¨as, B.R. Zhao, and Ö. Rapp, Physica C 388, 349 (2003).

https://doi.org/10.1016/S0921-4534(02)02497-8

A.L. Solovjov, H.-U. Hambermeier, and T. Haage, Low. Temp. Phys. 28, 17 (2002).

https://doi.org/10.1063/1.1449180

A.L. Solovjov, H.-U. Hambermeier, and T. Haage, Low. Temp. Phys. 28, 99 (2002).

https://doi.org/10.1063/1.1528572

M. Mun, S. Lee, S.S. Salk, H.J. Shin, and M.K. Joo, Phys. Rev. B 48, 6703 (1993).

https://doi.org/10.1103/PhysRevB.48.6703

D.H. Kim and A.M. Goldman, Phys. Rev. B 39, 12275 (1989).

https://doi.org/10.1103/PhysRevB.39.12275

A.K. Ghosh, S.K. Bandyopadhyay, and A.N. Basu, J. Appl. Phys. 86, 3247 (1999).

A.K. Pradhan, S.B. Roy, P. Chaddah, C. Chen, and B.M. Wanklyn, Phys. Rev. B 50, 7180 (1994).

https://doi.org/10.1103/PhysRevB.50.7180

C. Baraduc, V. Pagnon, A. Buzdin, J.Y. Henry, and C. Ayache, Phys. Lett. A 166, 267 (1992).

https://doi.org/10.1016/0375-9601(92)90375-V

A.K. Ghosh, S.K. Bandyopadhyay, and A.N. Basu, Mod. Phys. Lett. B 11, 1013 (1997).

https://doi.org/10.1142/S0217984997001225

W.E. Lawrence and S. Doniach, in Proceed. of the Twelfth Int. Conf. on Low Temperature Physics, Kyoto, 1970, edited by Eizo Kanda (Keigaku, Tokyo, 1971), P. 361.

M. Ausloos, Ch. Laurent, S.K. Patapis, C. Politis, H.L. Luo, P.A. Godelaine, F. Gillet, A. Dang, and R. Cloots, Z. Phys. B 83, 355 (1991).

https://doi.org/10.1007/BF01313405

P. Konsin, B. Sorkin, and M. Ausloos, Supercond. Sci. Technol. 11, 1 (1998).

https://doi.org/10.1088/0953-2048/11/1/001

A.K. Ghosh, S.K. Bandyopadhyay, and A.N. Basu, J. Appl. Phys. 86, 3247 (1999).

L.G. Aslamazov and A.L. Larkin, Phys. Lett. A 26, 238 (1968).

https://doi.org/10.1016/0375-9601(68)90623-3

N.A. Khan, A.A. Khurram, and A. Javaid, Physica C 9, 422 (2005).

https://doi.org/10.1016/j.physc.2005.02.013

J.Y Juang, M.C. Hsieh, C.W. Luo, T.M. Uen, K.H. Wu, and Y.S. Gou, Physica C 329, 45 (2000).

P. Mandal, A. Poddar, A.N. Das, B. Ghosh, and P. Choudhury, Physica C 169, 43 (1990).

https://doi.org/10.1016/0921-4534(90)90287-O

H. Ihara, A. Iyo, K. Tanaka, K. Tokiwa, K. Ishida, N. Terada, M. Tokumoto, Y. Sekita, T. Tsukamoto, and T. Watanabe, Physica C 1973, 282 (1997).

https://doi.org/10.1016/S0921-4534(97)01057-5

H. Ihara, A. Iyo, K. Tokiwa, N. Terada, M. Tokumoto, and M. Umeda, Advances in Superconductivity VIII, Proceed. of the 8th Int. Symposium on Superconductivity (ISS '95), October 30-November 2, 1995, Hamamatsu.

F. Vidal, J.A. Veira, J. Maza, J.J. Ponte, F. Garcia-Alvarado, E. Moran, J. Amador, C. Cascales, A. Castro, M.T. Casais, and I. Rasines, Physica C 156, 807 (1988). https://doi.org/10.1016/0921-4534(88)90166-9

A.A. Khurram and N.A. Khan, Condens. Matter 20, 045216 (2008).

A.A. Khurram, M. Mumtaz, N.A. Khan, M.M. Ahadian, and A. Iraji-zad, Supercond. Sci. Technol. 20, 742 (2007). https://doi.org/10.1088/0953-2048/20/8/004

Downloads

Published

2022-02-15

How to Cite

Shabbir, B., Younis, A., & Khan, N. A. (2022). Annealing Effects on FluctuationInduced Conductivity of (Cu0.5Tl0.25Hg0.25)Ba2Ca3Cu4O12-δ, Superconductor. Ukrainian Journal of Physics, 56(3), 233. https://doi.org/10.15407/ujpe56.3.233

Issue

Section

Solid matter