On Molecular Bonding Logic and Matrix Representation of Constant and Balanced Boolean Functions

Authors

  • E.S. Kryachko Bogolyubov Institute for Theoretical Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe56.7.694

Keywords:

-

Abstract

Representing a bonding manifold of a molecule or molecular cluster by a graph given by a set of vertices associated with atoms and a set of edges imitating bonds, the bonding edge encoding formalism is defined on n-tuples qubits in terms of the NOT logic gate acting on the "non-bonded" string. This formalism is illustrated by the simplest diatomic and triatomic molecules whose adjacency matrices generate different quadratic Boolean functions, among which the balanced function appears. In this regard, we review the Deutsch–Jozsa quantum algorithm, well-known in quantum computing, that discriminates between the balanced and constant Boolean functions. A novel matrix representation of the constant-balanced
quantum oracle within this algorithm is elaborated. The proposed approach is generalized to distinguish between constant and evenly balanced Boolean functions.

References

M.A. Nielsen and I.L. Chuang, Quantum Computation and Quantum Information (Cambridge Univ. Press, Cambridge, 2000).

D. Bouwmeester, A. Ekert, and A. Zeilinger (Eds.), The Physics of Quantum Information (Springer, Berlin, 2001).

https://doi.org/10.1007/978-3-662-04209-0

M. Conrad and K.-P. Zauner, Molecular Computing (MIT Press, Boston, 2003).

K.L. Kompa and R.D. Levine, Proc. Natl. Acad. Sci. USA 98, 410 (2001).

https://doi.org/10.1073/pnas.98.2.410

I. Duchemin and C. Joachim, Chem. Phys. Lett. 406, 167 (2005).

https://doi.org/10.1016/j.cplett.2005.02.090

E.G. Emberly and G. Kirczenow, Phys. Rev. Lett. 91, 188301 (2003).

https://doi.org/10.1103/PhysRevLett.91.188301

J.M. Myers, A.F. Fahmy, S.J. Glaser, and R. Marx, Phys. Rev. A 63, 032302 (2002).

https://doi.org/10.1103/PhysRevA.63.032302

C.M. Tesch and R. de Vivie-Riedle, J. Chem. Phys. 121, 12158 (2004).

https://doi.org/10.1063/1.1818131

E.S. Kryachko and F. Remacle, Mol. Phys. 106, 521 (2008).

https://doi.org/10.1080/00268970701881170

B. Schumacher, Phys. Rev. A 51, 2738 (1995).

https://doi.org/10.1103/PhysRevA.51.2738

D.B. West, Introduction to Graph Theory (Prentice Hall, Upper Saddle River, NJ, 2001).

C. Riera and M. G. Parker, IEEE Trans. Inform. Theory 52, 4142 (2006).

https://doi.org/10.1109/TIT.2006.880069

G.P. Berman, G.D. Doolen, G.V. Lopez, and V.I. Tsifrinovich, Comp. Phys. Commun. 146, 324 (2002).

https://doi.org/10.1016/S0010-4655(02)00423-X

D. Deutsch and R. Jozsa, Proc. R. Soc. London, Ser. A 439, 553 (1992).

https://doi.org/10.1098/rspa.1992.0167

D. Deutsch, A. Ekert, R. Jozsa, C. Macchiavello, S. Popescu, and A. Sampera, Phys. Rev. Lett. 77, 2818 (1996).

https://doi.org/10.1103/PhysRevLett.77.2818

R. Jozsa, Proc. R. Soc. London, Ser. A 454, 323 (1996).

https://doi.org/10.1098/rspa.1998.0163

N. Schuch and J. Siewert, Phys. Rev. Lett. 91, 027902 (2003).

https://doi.org/10.1103/PhysRevLett.91.027902

M. Batty, S.L. Braunstein, and A.J. Duncan, J. Comput. Math. 9, 40 (2006)

https://doi.org/10.1112/S1461157000001182

e-print arXiv: quant-ph/0412067 (2004).

Arvind and D. Collins, Phys. Rev. A 68, 052301 (2003).

https://doi.org/10.1103/PhysRevA.68.052301

D. Collins, K.W. Kim and W.C. Holton, Phys. Rev. A 58, R1633 (1998).

https://doi.org/10.1103/PhysRevA.58.R1633

R. Cleve, A. Ekert, C. Macchiavello, and M. Mosca, Proc. R. Soc. London, Ser. A 454, 339 (1998).

https://doi.org/10.1098/rspa.1998.0164

W.L. Yang, C.Y. Chen, Z.Y. Xu, and M. Feng, e-print arXiv: 1002.4814v1 (2010).

D. Collins, e-print arXiv: 1002.4227v1 (2010).

J. Kim, J.-S. Lee, S. Lee, and C. Cheong, Phys. Rev. A 62, 022312 (2000).

https://doi.org/10.1103/PhysRevA.62.022312

A. Del Duce, S. Savory, and P. Bayvel, J. Phys.: Condens. Matter 18, S759 (2006).

L.M. K. Vandersypen and I.L. Chuang, Rev. Mod. Phys. 76, 1037 (2004).

https://doi.org/10.1103/RevModPhys.76.1037

B.M. Anderson and D. Collins, Phys. Rev. A 72, 042337 (2005).

https://doi.org/10.1103/PhysRevA.72.042337

J.A. Bergou, U. Herzog, and M. Hillery, Phys. Rev. Lett. 90, 257901 (2003).

https://doi.org/10.1103/PhysRevLett.90.257901

J.A. Bergou and M. Hillery, Phys. Rev. A 72, 012302 (2005).

https://doi.org/10.1103/PhysRevA.72.012302

F.M. Woodward and R. Brüschweiler, e-print arXiv: quant-ph/0006024 (2000).

D.P. Chi, J. Kim, and S. Lee, J. Phys. A: Math. Gen. 34, 5251 (2001).

E. Farhi, J. Goldstone, S. Gutmann, and M. Sipser, Phys. Rev. Lett. 81, 5442 (1998).

https://doi.org/10.1103/PhysRevLett.81.5442

A.Wòjcik and R.W. Chhajlany, e-print arXiv: quant-ph/0506248 (2005).

Downloads

Published

2022-02-09

How to Cite

Kryachko, E. (2022). On Molecular Bonding Logic and Matrix Representation of Constant and Balanced Boolean Functions. Ukrainian Journal of Physics, 56(7), 694. https://doi.org/10.15407/ujpe56.7.694

Issue

Section

General problems of theoretical physics