Two-Electron Quantum Dots with Parabolic Confinement (Low Lying Para- and Ortho-States)

Authors

  • Menberu Mengesha Addis Ababa University, Physics Department
  • V.N. Mal’nev Addis Ababa University, Physics Department

DOI:

https://doi.org/10.15407/ujpe56.11.1228

Keywords:

-

Abstract

Three low lying energy levels of a 3D two-electron quantum dot (QD) with parabolic confinement are obtained by the variational method. The proposed interpolation formulas for the variation parameters allow one to recover the energy levels in a wide range of the Coulomb interaction constant. The quantum states of the QD are divided into the para- and ortho-states like in the theory of helium atom. The quantum transitions from the ortho-state to the para-state are possible only with account of the spin-orbit interaction. At low temperatures, an ensemble of two-electron QDs contains dots in the ground para-state and in the first excited
ortho-state, which is metastable. These QDs have the entangled spin wave functions that are related to the Einstein–Podolsky–Rosen (EPR) states desirable for the quantum information protocol.

References

S.S. Rink, D.A.B. Miller, and D.S. Chemla, Phys. Rev. B 35, 8114 (1986).

G.W. Bryant, Phys. Rev. B 5, 2 (1995).

Li. W.Ping, Xiao, Jing-lin, Y.J. Wen, Yu Yi-Fu, and Wang-Zi-Wu, Chin. Phys. Rev. B 19, 047102 (2010).

https://doi.org/10.1088/1674-1056/19/4/047102

A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).

https://doi.org/10.1103/PhysRev.47.777

W.D. Oliver, F. Yamaguchi, and Y. Yamamoto, Phys. Rev. Lett. 88, 037901 (2002).

https://doi.org/10.1103/PhysRevLett.88.037901

L. He, G. Bester, and A. Zunger, Phys. Rev. B 72, 195307 (2005).

https://doi.org/10.1103/PhysRevB.72.165334

A. Ferron, O. Osenda, and P. Serra, Phys. Rev. A 79, 032509 (2009).

https://doi.org/10.1103/PhysRevA.79.032509

P. Gombas and D. Kisdi,Wave Mechanics (Akadémiai Kiado, Budapest, 1973).

O. Ciftja and A.A. Kumar, Phys. Rev. B 70, 205326 (2004).

https://doi.org/10.1103/PhysRevB.70.205326

G. Arfken, Mathematical Methods for Physicists (Academic Press, San Diego, CA, 1985).

L.I. Schiff, Quantum Mechanics (Springer, New York, 1964).

I.O. Vakarchuk, Quantum Mechanics (Ivan Franko L'viv University, L'viv, 2004) (in Ukrainian).

J. Liu, G.G. Duan, W.G. Yin, W.N. Mei, R.W. Smith, and J.R. Hardy, Phys. Rev. B 70, 144106 (2004).

Downloads

Published

2022-02-03

How to Cite

Mengesha, M., & Mal’nev, V. (2022). Two-Electron Quantum Dots with Parabolic Confinement (Low Lying Para- and Ortho-States). Ukrainian Journal of Physics, 56(11), 1228. https://doi.org/10.15407/ujpe56.11.1228

Issue

Section

Nanosystems