Carriers Spectra of Functionalized Semiconducting Nanowire and Conformational Transition in Molecules


  • V.A. Lykakh National Technical University of Ukraine "Kiev Polytechnic Institute"
  • E.S. Syrkin B. Verkin Institute for Low Temperature Physics and Engineering, Nat. Acad. of Sci. of Ukraine





The tuning of the spectrum of semiconducting nanowires as a result of the functionalization by a layer of molecules with a conformational transition is investigated. The situation where the electric charge carrier induces the conformational transition with a change of the orientation of the intrinsic electric dipole moments of molecules is expected. The spectrum of a carrier and the parameters of the arising quantum well are determined by the derived self-consistent system of transcendent equations. The system includes the Schrödinger equation for a charge carrier, nonlinear equations for the intrinsic electric-dipole moments, the material equations de4scribing the interaction of an extra carrier in the nanowire and molecular electric dipoles. In a semiconductor nanowire, the hole and electron spectra are symmetric. It is shown that the layer of adsorbed molecules breaks this symmetry when the
molecular dipoles create the conditions for a localization of carriers of only one kind, which depends on the charge sign and the orientation of dipoles. The functionalized nanowires can be used as a semiconductor rectifier.


D.K. Ferry and S.M. Goodnick, Transport in Nanostructures (Cambridge Univ. Press, Cambridge, 1997).

A.I. Yanson, I.K. Yanson, and J.M. van Ruitenbeek, Phys. Rev. Lett. 87, 216805 (2001).

D. Orlikowski, H. Mehrez, J. Taylor, H. Guo, J. Wang, and C. Roland, Phys. Rev. B 63, 155412 (2001).

P. Poncharal, C. Berger, Yan Yi et al., J. Phys. Chem. B 106, 12104 (2002).

C. Dekker, Phys. Today 52, 22 (1999).

H. Dai, Phys. World 13 (6), 43 (2000).

N.P. Armitage, J.-C.P. Gabriel, and G. Gruner, J. Appl. Phys. 95, 3228 (2004).

E. Buzaneva, A. Gorchynskyy, G. Popova et al., Frontiers of Multifunctional Nanosystems, edited by E. Buzaneva and P. Scharff (Kluwer, Dordrecht, 2002), p. 191.

O. Neilands, Molecular Low Dimensional and Nanostructured Materials for Advanced Applications, edited by A. Graja et al. (Kluwer, Dordrecht, 2002), p. 181.

S. Daniel, T.P. Rao, K.S. Rao et al., Sens. and Actuat. B 122, 672 (2007).

C.M. Lieber and Zhong Lin Wang, MRS Bull. 32, 99 (2007).

C.B. George, M.A. Ratner, and J.B. Lambert, J. Phys. Chem. A 113, 3876 (2009).

E.D. Canto, K. Flavin, M. Natali, T. Perova, and S. Giordani, Carbon 48, 2815 (2010).

L.D. Landau and E.M. Lifshitz, Quantum Mechanics. Non-Relativistic Theory (Pergamon Press, New York, 1980).

R. Blinc and B. Zeks, Soft Modes in Ferroelectrics and Antiferroelectrics (North-Holland, Amsterdam, 1974).

V.A. Lykakh and E.S. Syrkin, Semicond. Sci. Technol. 39, 679 (2005).

S. Fl"{ugge, Practical Quantum Mechanics (Springer, Berlin, 1971).

H.B. Dwight, Tables of Integrals and Other Mathematical Data (Macmillan, New York, 1961).

W.H. Flygare, Molecular Structure and Dynamics (Prentice-Hall, Englewood Cliffs, NJ, 1978).

D.E. Metzler, Encyclopedia of Physical Science and Technology [c]. Biochemistry (Academic Press, New York, 2001), p. 509.




How to Cite

Lykakh, V., & Syrkin, E. (2012). Carriers Spectra of Functionalized Semiconducting Nanowire and Conformational Transition in Molecules. Ukrainian Journal of Physics, 57(7), 710.