Mechanisms for Anomalous Diffusion in a Nematic Environment

  • A. Brodin Institute of Physics, Nat. Acad. of Sci. of Ukraine, National Technical University of Ukraine “KPI”
Keywords: anomalous diffusion, nematic environment

Abstract

Mechanisms for anomalous diffusion of colloidal particles in a nematic environment are theoretically investigated. It is shown that thermal fluctuations of the nematic director may couple to the translational and orientational motions of particles, which leads to anomalous diffusion. Both superdiffusion, when the mean square displacement increases with the time faster than linearly, and subdiffusion, when this dependence is slower than linear, are possible. For micrometer-sized particles, the anomalous diffusion effects are expected on millisecond time scales.

References


  1. R. Brown, Phil. Mag. 4, 161 (1828).

  2. A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905). https://doi.org/10.1002/andp.19053220806

  3. M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906). https://doi.org/10.1002/andp.19063261405

  4. P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).

  5. B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).

  6. H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973). https://doi.org/10.1103/PhysRevB.7.4491

  7. J. Sprakel, J. van der Gucht, M.A.C. Stuart, and N.A.M. Besseling, Phys. Rev. Lett. 99, 208301 (2007). https://doi.org/10.1103/PhysRevLett.99.208301

  8. A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990). https://doi.org/10.1103/PhysRevLett.65.2201

  9. G.L. Paul and P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981). https://doi.org/10.1088/0305-4470/14/12/025

  10. H. Stark, Phys. Rep. 351, 387 (2001). https://doi.org/10.1016/S0370-1573(00)00144-7

  11. P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).

  12. J.C. Loudet, P. Hanusse, and P. Poulin, Science 306, 1525 (2004). https://doi.org/10.1126/science.1102864

  13. P.G. de Gennes, C. R. Acad. Sci. (Paris) 266, 15 (1968).

  14. Groupe d'Etude des Cristaux Liquides (Orsay), J. Chem. Phys. 51, 816 (1969).

  15. T.C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998). https://doi.org/10.1103/PhysRevE.57.610

  16. Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Science 314, 626 (2006). https://doi.org/10.1126/science.1130146

  17. H. Stark and D. Ventzki, Europhys. Lett. 57, 60 (2002). https://doi.org/10.1209/epl/i2002-00541-0

  18. H. Stark, D. Ventzki, and M. Reichert, J. Phys.: Condens. Matter 15, S191 (2003). https://doi.org/10.1088/0953-8984/15/1/324

  19. B.J. Berne, J.P. Boon, and S.A. Rice, J. Chem. Phys. 45, 1086 (1966). https://doi.org/10.1063/1.1727719

Published
2018-10-06
How to Cite
Brodin, A. (2018). Mechanisms for Anomalous Diffusion in a Nematic Environment. Ukrainian Journal of Physics, 58(3), 237. https://doi.org/10.15407/ujpe58.03.0237
Section
Soft matter