Mechanisms for Anomalous Diffusion in a Nematic Environment

Authors

  • A. Brodin Institute of Physics, Nat. Acad. of Sci. of Ukraine, National Technical University of Ukraine “KPI”

DOI:

https://doi.org/10.15407/ujpe58.03.0237

Keywords:

anomalous diffusion, nematic environment

Abstract

Mechanisms for anomalous diffusion of colloidal particles in a nematic environment are theoretically investigated. It is shown that thermal fluctuations of the nematic director may couple to the translational and orientational motions of particles, which leads to anomalous diffusion. Both superdiffusion, when the mean square displacement increases with the time faster than linearly, and subdiffusion, when this dependence is slower than linear, are possible. For micrometer-sized particles, the anomalous diffusion effects are expected on millisecond time scales.

References

<ol>
<li> R. Brown, Phil. Mag. 4, 161 (1828).</li>
<li> A. Einstein, Ann. Phys. (Leipzig) 17, 549 (1905).&nbsp;<a href="https://doi.org/10.1002/andp.19053220806">https://doi.org/10.1002/andp.19053220806</a></li>
<li> M. von Smoluchowski, Ann. Phys. (Leipzig) 21, 756 (1906).&nbsp;<a href="https://doi.org/10.1002/andp.19063261405">https://doi.org/10.1002/andp.19063261405</a></li>
<li> P. Langevin, C. R. Acad. Sci. (Paris) 146, 530 (1908).</li>
<li> B.J. Berne and R. Pecora, Dynamic Light Scattering (Wiley, New York, 1976).</li>
<li> H. Scher and M. Lax, Phys. Rev. B 7, 4491 (1973).&nbsp;<a href="https://doi.org/10.1103/PhysRevB.7.4491">https://doi.org/10.1103/PhysRevB.7.4491</a></li>
<li> J. Sprakel, J. van der Gucht, M.A.C. Stuart, and N.A.M. Besseling, Phys. Rev. Lett. 99, 208301 (2007).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.99.208301">https://doi.org/10.1103/PhysRevLett.99.208301</a></li>
<li> A. Ott, J.P. Bouchaud, D. Langevin, and W. Urbach, Phys. Rev. Lett. 65, 2201 (1990).&nbsp;<a href="https://doi.org/10.1103/PhysRevLett.65.2201">https://doi.org/10.1103/PhysRevLett.65.2201</a></li>
<li> G.L. Paul and P.N. Pusey, J. Phys. A: Math. Gen. 14, 3301 (1981).&nbsp;<a href="https://doi.org/10.1088/0305-4470/14/12/025">https://doi.org/10.1088/0305-4470/14/12/025</a></li>
<li> H. Stark, Phys. Rep. 351, 387 (2001).&nbsp;<a href="https://doi.org/10.1016/S0370-1573(00)00144-7">https://doi.org/10.1016/S0370-1573(00)00144-7</a></li>
<li> P.G. de Gennes and J. Prost, The Physics of Liquid Crystals (Clarendon, Oxford, 1993).</li>
<li> J.C. Loudet, P. Hanusse, and P. Poulin, Science 306, 1525 (2004).&nbsp;<a href="https://doi.org/10.1126/science.1102864">https://doi.org/10.1126/science.1102864</a></li>
<li> P.G. de Gennes, C. R. Acad. Sci. (Paris) 266, 15 (1968).</li>
<li> Groupe d'Etude des Cristaux Liquides (Orsay), J. Chem. Phys. 51, 816 (1969).</li>
<li> T.C. Lubensky, D. Pettey, N. Currier, and H. Stark, Phys. Rev. E 57, 610 (1998).&nbsp;<a href="https://doi.org/10.1103/PhysRevE.57.610">https://doi.org/10.1103/PhysRevE.57.610</a></li>
<li> Y. Han, A.M. Alsayed, M. Nobili, J. Zhang, T.C. Lubensky, A.G. Yodh, Science 314, 626 (2006).&nbsp;<a href="https://doi.org/10.1126/science.1130146">https://doi.org/10.1126/science.1130146</a></li>
<li> H. Stark and D. Ventzki, Europhys. Lett. 57, 60 (2002).&nbsp;<a href="https://doi.org/10.1209/epl/i2002-00541-0">https://doi.org/10.1209/epl/i2002-00541-0</a></li>
<li> H. Stark, D. Ventzki, and M. Reichert, J. Phys.: Condens. Matter 15, S191 (2003).&nbsp;<a href="https://doi.org/10.1088/0953-8984/15/1/324">https://doi.org/10.1088/0953-8984/15/1/324</a></li>
<li> B.J. Berne, J.P. Boon, and S.A. Rice, J. Chem. Phys. 45, 1086 (1966).&nbsp;<a href="https://doi.org/10.1063/1.1727719">https://doi.org/10.1063/1.1727719</a></li>
</ol>

Downloads

Published

2018-10-06

How to Cite

Brodin, A. (2018). Mechanisms for Anomalous Diffusion in a Nematic Environment. Ukrainian Journal of Physics, 58(3), 237. https://doi.org/10.15407/ujpe58.03.0237

Issue

Section

Soft matter

Most read articles by the same author(s)