Packing and Compressibility of Binary Micromechanical (Granular) Systems

Authors

DOI:

https://doi.org/10.15407/ujpe70.8.543

Keywords:

granular materials, mixtures, compaction, compressibility

Abstract

Using the Carnahan–Starling–Mansoori hard-sphere conglomeration models and the Kirkwood– Buff statistical theory, the effect of compaction (packing) on the compressibility of a binary granular mixture has been analyzed. The theoretical results are compared with the experimental ones obtained in alternative studies of the systems whose internal structure corresponds to the construction characteristics of the model. The possibility of the maximum packing effect at special dispersion and mole fraction values of the components has been shown. The existence of the limit and intermediate states of the mixture with a predominant concentration of one of the components and the possibility of the most adequate description of the system properties in such states using one of the above-mentioned approaches have been demonstrated. The interval of values for the component volume fractions has been determined, where both approaches well describe the data of corresponding experiments.

References

1. M.S. Wertheim. Exact solution of the Percus-Yevick integral equation for hard spheres. Phys. Rev. Lett. 10, 321 (1963).

https://doi.org/10.1103/PhysRevLett.10.321

2. E. Thiele. Equation of state for hard spheres. J. Chem. Phys. 39, 474 (1963).

https://doi.org/10.1063/1.1734272

3. N.F. Carnahan, K.E. Starling. Equation of state for nonattracting rigid spheres. J. Chem. Phys. 51, 635 (1969).

https://doi.org/10.1063/1.1672048

4. G.A. Mansoori, N.F. Carnahan, K.E. Starling, T.W. Leland, Jr. Equilibrium thermodynamic properties of the mixture of hard spheres. J. Chem. Phys. 54, 1523 (1971).

https://doi.org/10.1063/1.1675048

5. J.G. Kirkwood, F.P. Buff. The statistical mechanical theory of solutions. I. J. Chem. Phys. 19, 774 (1951).

https://doi.org/10.1063/1.1748352

6. S. Pillitteri, G. Lumay, E. Opsomer, N. Vandewalle. From jamming to fast compaction dynamics in granular binary mixtures. Sci. Rep. 9, 7281 (2019).

https://doi.org/10.1038/s41598-019-43519-6

7. S. Pillitteri, G. Lumay, E. Opsomer, N. Vandewalle. How size ratio and segregation affect the packing of binary granular mixtures. Soft Matt. 16, 9094 (2020).

https://doi.org/10.1039/D0SM00939C

8. T. Boutreux, P.G. de Gennes. Compaction of granular mixtures: a free volume model. Physica A 244, 59 (1997).

https://doi.org/10.1016/S0378-4371(97)00236-7

9. O. Gerasymov, A. Spivak, I. Andrianova, L. Sidletska, V. Kuryatnikov, A. Kilian. Micro-mechanical (granular) mixtures for environmental safety technologies. E3S Web of Conferences 234, 00075 (2021).

https://doi.org/10.1051/e3sconf/202123400075

10. O. Gerasymov, I. Andrianova, A. Spivak, L. Sidletska, V. Kuryatnikov, A. Kilian. Tightening (compaction) of bicomponent micromechanical (granular) system. Sci. Innovat. 17, 79 (2021).

Published

2025-08-11

How to Cite

Gerasymov, O., & Spivak, A. (2025). Packing and Compressibility of Binary Micromechanical (Granular) Systems. Ukrainian Journal of Physics, 70(8), 543. https://doi.org/10.15407/ujpe70.8.543

Issue

Section

Structure of materials

Similar Articles

1 2 3 4 5 > >> 

You may also start an advanced similarity search for this article.