Raman Study of Visible-Light Photooxidation of As2S3 : Ag Glasses
DOI:
https://doi.org/10.15407/ujpe70.3.206Keywords:
amorphous semiconductors, X-ray diffraction, Raman spectroscopy, photochemical reactions, oxidationAbstract
As2S3 : Ag glasses (up to 10 at.% Ag) were prepared by the melt quenching. Their amorphous structure is confirmed by X-ray diffraction and Raman spectroscopy. No noticeable changes in the Raman spectra with increasing Ag content are revealed at the excitation by a 671 nm laser or by a near-bandgap laser (λexc = 532 nm) at the low power density Pexc = 4 kW/cm2. Meanwhile, for the samples with Ag content above 4 at.% at the excitation by λexc = 532 nm at a higher Pexc = 40 kW/cm2, new narrow peaks emerge and are clearly identified as Raman features of arsenolite (As2O3) formed on the As2S3 : Ag glass surface under the intense illumination. This is the first Raman spectroscopic evidence of the visible-light photooxidation of As2S3-based glasses which previously was observed only under the illumination by ultraviolet light strongly absorbed by the surface layer leading to thermal decomposition of As2S3 in the illuminated area and oxidation of the vaporized arsenic atoms by oxygen from the ambient air. Most likely, the photooxidation is facilitated by the effect of silver on the glass network, reducing its rigidity, or, alternatively, the enhancement of photochemical reaction due to the plasmonic interaction of the incident light with residual ultrasmall silver nanoparticles existing in the glass sample.
References
1. K. Tanaka. Photoinduced deformations in chalcogenide glasses. In Amorphous Chalcogenides: Advances and Applications. Edited by R.P. Wang (Pan Stanford Publishing, 2014), p. 59 [ISBN: 978-0-429-07429-5].
2. K. Tanaka, K. Shimakawa. Amorphous chalcogenide semiconductors and related materials (Springer, 2021) [ISBN: 978-3-030-69598-9].
https://doi.org/10.1007/978-3-030-69598-9
3. S.N. Yannopoulos. Athermal photoelectronic effects in noncrystalline chalcogenides: Current status and beyond. In The World Scientific Reference of Amorphous Materials. Edited by A.V. Kolobov, K. Shimakawa (World Scientific, 2021), p. 251 [ISBN: 978-981-12-1594-0].
https://doi.org/10.1142/9789811215575_0009
4. Y. Azhniuk, V. Kryshenik, M. Rahaman, V. Loya, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Mass transport in amorphous As2S3 films due to directional light scattering under illumination by an oblique tightly focused beam. J. Non-Cryst. Solids 576, 121269 (2022).
https://doi.org/10.1016/j.jnoncrysol.2021.121269
5. B.J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nature Photonics 5, 141 (2011).
https://doi.org/10.1038/nphoton.2011.309
6. V.M. Kryshenik, Yu.M. Azhniuk, V.S. Kovtunenko. Alloptical patterning in azobenzene polymers and amorphous chalcogenides. J. Non-Cryst. Solids 512, 112 (2019).
https://doi.org/10.1016/j.jnoncrysol.2019.02.019
7. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nature Photonics 8, 643 (2014).
https://doi.org/10.1038/nphoton.2014.138
8. V.M. Kryshenik. Dynamic photoinduced changes of optical characteristics and effect of optical memory in amorphous As-S film-based waveguides. J. Non-Cryst. Solids 585, 121528 (2022).
https://doi.org/10.1016/j.jnoncrysol.2022.121528
9. A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain, Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolith. MEMS MOEMS 8, 043012 (2009).
https://doi.org/10.1117/1.3273966
10. L. Su, C.J. Rowlands, S.R. Elliott. Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates. Opt. Lett. 34, 1645 (2009).
https://doi.org/10.1364/OL.34.001645
11. P.J. Allen, B.R. Johnson, B.J. Riley. Photo-oxidation of thermally evaporated As2S3 thin films. J. Optoelectron. Adv. Mater. 7, 1759 (2005).
12. P. Knotek, M. Vlcek, M. Kincl, L. Tichy. On the ultraviolet light induced oxidation of amorphous As2S3 film. Thin Solid Films 520, 5472 (2012).
https://doi.org/10.1016/j.tsf.2012.03.116
13. A. Kovalskiy, M. Vlcek, K. Palka, J. Buzek, J. YorkWinegar, J. Oelgoetz, R. Golovchak, O. Shpotyuk, H. Jain, Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Appl. Surf. Sci. 394, 604 (2017).
https://doi.org/10.1016/j.apsusc.2016.10.002
14. Y. Azhniuk, D. Solonenko, V. Loya, I. Grytsyshche, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Raman evidence for surface oxidation of amorphous As2S3 thin films under ultraviolet irradiation. Appl. Surf. Sci. 467-468, 119 (2019).
https://doi.org/10.1016/j.apsusc.2018.10.157
15. Yu.M. Azhniuk, V.M. Dzhagan, D. Solonenko, A. Mukherjee, V.Yu. Loya, I.V. Grytsyshche, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn, Laser annealing-induced formation of CdS nanocrystals in Cd-doped amorphous As2S3 thin films. Phys. Status Solidi B 256, 1800298 (2019).
https://doi.org/10.1002/pssb.201800298
16. Y.M. Azhniuk, V.V. Lopushansky, V.Yu. Loya, V.M. Kryshenik, V.M. Dzhagan, A.V. Gomonnai, D.R.T. Zahn. Raman study of laser-induced formation of II-VI nanocrystals in zinc-doped As-S(Se) films. Appl. Nanosci. 10, 4831 (2020).
https://doi.org/10.1007/s13204-020-01269-2
17. M. Ohta, M. Tsutsumi, F. Izumi, S. Ueno. Phase separation and structural change accompanying the introduction of silver to arsenic trisulphide glass. J. Mater. Sci. 17, 2431 (1982).
https://doi.org/10.1007/BF00543755
18. F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S.N. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As-S glasses: Raman and SEM studies. J. Non-Cryst. Solids 355, 2010 (2009).
https://doi.org/10.1016/j.jnoncrysol.2009.04.070
19. Th.Ch. Hasapis, K.S. Andrikopoulos, E. Hatzikraniotis, V. Dracopoulos, T. Wagner, S.N. Yannopoulos, K.M. Paraskevopoulos, Vibrational properties of silver-doped arsenic chalcogenide bulk glasses. AIP Conf. Proc. 1203, 283 (2010).
https://doi.org/10.1063/1.3322451
20. K.S. Andrikopoulos, J. Arvanitidis, V. Dracopoulos, D. Christofilos, T. Wagner, S.N. Yannopoulos. Nanoindentation and Raman studies of phase-separated Ag-As-S glasses. Appl. Phys. Lett. 99, 171911 (2011).
https://doi.org/10.1063/1.3651494
21. M. Frumar, T. Wagner. Ag doped chalcogenide glasses and their applications. Curr. Opin. Solid State Mater. Sci. 7, 117 (2003).
https://doi.org/10.1016/S1359-0286(03)00044-5
22. D.G. Georgiev, P. Boolchand, K.A. Jackson, Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag. 83, 2941 (2003).
https://doi.org/10.1080/1478643031000151196
23. P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut. Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system. Phys. Rev. B 78, 224208 (2008).
https://doi.org/10.1103/PhysRevB.78.224208
24. R. Holomb, M. Veres, V. Mitsa. Ring-, branchy-, and cagelike AsnSm nanoclusters in the structure of amorphous semiconductors: ab initio and Raman study. J. Optoelectron. Adv. Mater. 11, 917 (2009).
25. R. Golovchak, O. Shpotyuk, J.S. McCloy, B.J. Riley, C.F. Windisch, S.K. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS. Phil. Mag. 90, 4489 (2010).
https://doi.org/10.1080/14786435.2010.510455
26. S.N. Yannopoulos, K.S. Andrikopoulos, D.Th. Kastrissios, G.N. Papatheodorou. Origin of photoinduced defects in glassy As2S3 under band gap illumination studied by Raman scattering: A revisory approach. Phys. Status Solidi B 249, 2005 (2012).
https://doi.org/10.1002/pssb.201200385
27. D. Tsiulyanu, M. Veres, R. Holomb, M. Ciobanu. Raman scattering evidence on the correlation of middle range order and structural self-organization of As-S-Ge glasses in the intermediate phase region, J. Non-Cryst. Solids 609 (2023) 122255. J. Non-Cryst. Solids 609, 122255 (2023).
https://doi.org/10.1016/j.jnoncrysol.2023.122255
28. O. Alekperov, Z. Jahangirli, R. Paucar. First-principles lattice dynamics and Raman scattering in ionic conductor β-Ag2S. Phys. Status Solidi B 253, 2049 (2016).
https://doi.org/10.1002/pssb.201552784
T. W´agner, Mir. Vlˇcek, S.O. Kasap, Mil. Vlˇcek, M. Frumar. Changing the composition of Ag-As-S amorphous films using photo-induced solid state reaction. J. NonCryst. Solids 284, 168 (2001).
https://doi.org/10.1016/S0022-3093(01)00397-0
30. M. Krbal, T. Wagner, T. Kohoutek, P. Nemec, J. Orava, M. Frumar. The comparison of Ag-As33S67 films prepared by thermal evaporation (TE), spin-coating (SC) and a pulsed laser deposition (PLD. J. Phys. Chem. Solids 68, 953 (2007).
https://doi.org/10.1016/j.jpcs.2007.03.036
31. A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisacar, A. Gubanova, G. Triduh. Structural properties of Ag-As-S chalcogenide glasses in phase separation region and their application in holographic grating recording. Opt. Mater. 94, 393 (2019).
https://doi.org/10.1016/j.optmat.2019.06.016
32. S.J. Gilliam, C.N. Merrow, S.J. Kirkby, J.O. Jensen, D. Zeroka, A. Banerjee. Raman spectroscopy of arsenolite: crystalline cubic As4O6. J. Solid State Chem. 173, 54 (2003).
https://doi.org/10.1016/S0022-4596(03)00082-3
33. Yu.M. Azhniuk, D. Solonenko, V.Yu. Loya, V.M. Kryshenik, V.V. Lopushansky, A. Mukherjee, A.V. Gomonnai, D.R.T. Zahn, Flexoelectric and local heating effects on CdSe nanocrystals in amorphous As2Se3 films. Mater. Res. Expr. 6, 095913 (2019).
https://doi.org/10.1088/2053-1591/ab3241
34. H. Fritzsche. Photo-induced fluidity of chalcogenide glasses. Solid State Commun. 99, 153 (1996).
https://doi.org/10.1016/0038-1098(96)00218-9
35. K. Tanaka, K. Shimakawa. Mechanisms of photoinduced fluidity in chalcogenide glasses: Molecular orbital analyses. J. Non-Cryst. Solids 481, 579 (2018).
https://doi.org/10.1016/j.jnoncrysol.2017.12.005
36. Y. Azhniuk, V. Dzhagan, D. Solonenko, V. Loya, I. Grytsyshche, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn, In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 471, 943 (2019).
https://doi.org/10.1016/j.apsusc.2018.12.097
37. I.P. Studenyak, M. Kranjˇcec, M.M. Pop. Urbach absorption edge and disordering processes in As2S3 thin films. J. Non-Cryst. Solids 357, 3866 (2011).
https://doi.org/10.1016/j.jnoncrysol.2011.07.032
38. O.I. Shpak, M.M. Pop, I.I. Shpak, I.P. Studenyak. Refractometric studies of chalcogenide glasses in Ag-As-S system. Opt. Mater. 35, 297 (2012).
https://doi.org/10.1016/j.optmat.2012.09.004
39. Y. Azhniuk, V. Lopushansky, V. Loya, D. Solonenko, V. Kryshenik, I.M. Voynarovych, A.V. Gomonnai, D.R.T. Zahn. Raman evidence for the oxidation of amorphous arsenic chalcogenide film surfaces under visible light. Mater. Res. Expr. 11, 046405 (2024).
https://doi.org/10.1088/2053-1591/ad3f7b
40. F.T.H. Broers, K. Janssens, J. Nelson Weker, S.M. Webb, A. Mehta, F. Meirer, K. Keune. Two pathways for the degradation of orpiment pigment (As2S3) found in paintings. J. Amer. Chem. Soc. 145, 8847 (2023).
https://doi.org/10.1021/jacs.2c12271
41. Y. Azhniuk, V. Lopushansky, S. Hasynets, V. Kryshenik, A.V. Gomonnai, D.R.T. Zahn. Photoinduced transformations in (As1−xBixS3) glass observed by Raman spectroscopy. J. Raman Spectrosc. 55, 637 (2024).
https://doi.org/10.1002/jrs.6658
42. K. Keune, J. Mass, F. Meirer, C. Pottasch, A. van Loon, A. Hull, J. Church, E. Pouyet, M. Cotte, A. Mehta. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses. J. Anal. At. Spectrom. 30, 813 (2015).
https://doi.org/10.1039/C4JA00424H
43. M. Vermeulen, J. Sanyova, K. Janssens, G. Nuyts, S. De Meyer, K. De Wael. The darkening of copper- or lead-based pigments explained by a structural modification of natural orpiment: a spectroscopic and electrochemical study. J. Anal. At. Spectrom. 32, 1331 (2017).
https://doi.org/10.1039/C7JA00047B
44. A. Kovalskiy, A. Ganjoo, S. Khalid, H. Jain. Combined high-resolution XPS and EXAFS study of Ag photodissolution in a-As2S3 thin film, J. Non-Cryst. Solids 356, 2332 (2010).
https://doi.org/10.1016/j.jnoncrysol.2010.02.021
45. M. Popescu, F. Sava, A. Lorinczi, A. Velea, M. Leonovici, S. Zamfira. Silver/amorphous As2S3 heterostructure. J. Optoelectron. Adv. Mater. 11, 1586 (2009).
46. F. Sava, M. Popescu, A. L¨orinczi, A. Velea. Possible mechanism of Ag photodiffusion in a-As2S3 thin films. Phys. Status Solidi B 250, 999 (2013).
https://doi.org/10.1002/pssb.201248517
47. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, H. Li. Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films. J. Non-Cryst. Solids 351, 3132 (2005).
https://doi.org/10.1016/j.jnoncrysol.2005.07.034
48. A.V. Stronski, M. Vlˇcek, A.I. Stetsun, A. Sklenaˇr, P.E. Shepeliavyi. Raman spectra of Ag- and Cu- photodoped chalcogenide films. Semicond. Phys. Quantum Electron. Optoelectron. 2 (2), 63 (1999).
https://doi.org/10.15407/spqeo2.02.063
49. J. Tasseva, R. Todorov, Tz. Babeva, K. Petkov. Structural and optical characterization of Ag photo-doped thin As40S60−xSex films for non-linear applications. J. Opt. 12, 065601 (2010).
https://doi.org/10.1088/2040-8978/12/6/065601
50. J. Orava, T. Wagner, M. Krbal, T. Kohoutek, Mil. Vlcek, L. Benes, E. Kotulanova, P. Bezdicka, P. Klapetek, M. Frumar. Selective wet-etching of amorphous/crystallized Ag-As-S and Ag-As-S-Se chalcogenide thin films. J. Phys. Chem. Solids 68, 1008 (2007).
https://doi.org/10.1016/j.jpcs.2007.03.056
51. K.O. ˇCajko, M. Dimitrievska, D.L. Sekuli´c, D.M. Petrovi´c, S.R. Luki´c-Petrovi´c. Ag-doped As-S-Se chalcogenide glasses: a correlative study of structural and dielectrical properties. J. Mater. Sci.: Mater. Electron. 32, 6688 (2021).
https://doi.org/10.1007/s10854-021-05384-w
52. I.M. Bolesta, M.M. Vakiv, V.G. Haiduchok, I.I. Kolych, A.A. Kushnir, I.M. Rovetskyy, Yu.M. Furgala. Plasmon absorption by silver nanoparticles on LiNbO3 surface. Ukr. J. Phys. 62, 39 (2017).
https://doi.org/10.15407/ujpe62.01.0039
53. I. Indutnyi, V. Mynko, M. Sopinskyy, P. Lytvyn. Impact of surface plasmon polaritons on silver photodiffusion into As2S3 film. Plasmonics 16, 181 (2021).
https://doi.org/10.1007/s11468-020-01275-8
54. V.O. Yukhymchuk, V.M. Rubish, V.M. Dzhagan, O.M. Hreshchuk, O.F. Isaieva, N.V. Mazur, M.O. Durkot, A.A. Kryuchyn, V.K. Kyrylenko, V.M. Novichenko, V.V. Kremenytskyi, Z.V. Maksimenko, M.Ya. Valakh. Surface-enhanced Raman scattering of As2S3 and Se thin films formed on Au nanostructures. Semicond. Phys. Quantum Electron. Optoelectron. 26, 49 (2023).
55. I.Z. Indutnyi, V.O. Yukhymchuk, V.I. Mynko, S.V. Mamykin, N.V. Mazur, O.F. Isaieva, V.M. Dzhagan, V.A. Danko, V.S. Yefanov, A.A. Korchovyy, P.M. Lytvyn. Shape effect of laterally ordered nanostructures on the efficiency of surface-enhanced Raman scattering. Ukr. J. Phys. 69, 11 (2024).
https://doi.org/10.15407/ujpe69.1.11
56. M. Ceppatelli, D. Scelta, M. Serrano-Ruiz, K. Dziubek, M. Morana, V. Svitlyk, G. Garbarino, T. Por¸eba, M. Mezouar, M. Peruzzini, R. Bini. Single-bonded cubic AsN from high-pressure and high-temperature chemical reactivity of arsenic and nitrogen. Angew. Chem. Int. Ed. 66, e202114191 (2022).
https://doi.org/10.1002/anie.202114191
57. T. Chivers, C. Lau. Raman spectroscopic identification of the S4N− and S3N− ions in blue solutions of sulfur in liquid ammonia. Inorg. Chem. 21, 453 (1982).
https://doi.org/10.1021/ic00131a089
58. S.H. Aryal, K.M. Page, S.M. Hyatt, R. Liu. Reassignment of fundamental vibrational modes of cyclic S4N3 cation. Spectrochim. Acta A 56, 851 (2000).
Downloads
Published
How to Cite
Issue
Section
License
Copyright Agreement
License to Publish the Paper
Kyiv, Ukraine
The corresponding author and the co-authors (hereon referred to as the Author(s)) of the paper being submitted to the Ukrainian Journal of Physics (hereon referred to as the Paper) from one side and the Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, represented by its Director (hereon referred to as the Publisher) from the other side have come to the following Agreement:
1. Subject of the Agreement.
The Author(s) grant(s) the Publisher the free non-exclusive right to use the Paper (of scientific, technical, or any other content) according to the terms and conditions defined by this Agreement.
2. The ways of using the Paper.
2.1. The Author(s) grant(s) the Publisher the right to use the Paper as follows.
2.1.1. To publish the Paper in the Ukrainian Journal of Physics (hereon referred to as the Journal) in original language and translated into English (the copy of the Paper approved by the Author(s) and the Publisher and accepted for publication is a constitutive part of this License Agreement).
2.1.2. To edit, adapt, and correct the Paper by approval of the Author(s).
2.1.3. To translate the Paper in the case when the Paper is written in a language different from that adopted in the Journal.
2.2. If the Author(s) has(ve) an intent to use the Paper in any other way, e.g., to publish the translated version of the Paper (except for the case defined by Section 2.1.3 of this Agreement), to post the full Paper or any its part on the web, to publish the Paper in any other editions, to include the Paper or any its part in other collections, anthologies, encyclopaedias, etc., the Author(s) should get a written permission from the Publisher.
3. License territory.
The Author(s) grant(s) the Publisher the right to use the Paper as regulated by sections 2.1.1–2.1.3 of this Agreement on the territory of Ukraine and to distribute the Paper as indispensable part of the Journal on the territory of Ukraine and other countries by means of subscription, sales, and free transfer to a third party.
4. Duration.
4.1. This Agreement is valid starting from the date of signature and acts for the entire period of the existence of the Journal.
5. Loyalty.
5.1. The Author(s) warrant(s) the Publisher that:
– he/she is the true author (co-author) of the Paper;
– copyright on the Paper was not transferred to any other party;
– the Paper has never been published before and will not be published in any other media before it is published by the Publisher (see also section 2.2);
– the Author(s) do(es) not violate any intellectual property right of other parties. If the Paper includes some materials of other parties, except for citations whose length is regulated by the scientific, informational, or critical character of the Paper, the use of such materials is in compliance with the regulations of the international law and the law of Ukraine.
6. Requisites and signatures of the Parties.
Publisher: Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine.
Address: Ukraine, Kyiv, Metrolohichna Str. 14-b.
Author: Electronic signature on behalf and with endorsement of all co-authors.