Raman Study of Visible-Light Photooxidation of As2S3 : Ag Glasses

Authors

  • Y.M. Azhniuk Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • A.I. Pogodin Uzhhorod National University
  • V.V. Lopushansky Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • M.J. Filep Uzhhorod National University, Ferenc R´ak´oczi II Transcarpathian Hungarian Institute
  • V.M. Kryshenik Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • I.M. Voynarovych Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine
  • A.V. Gomonnai Institute of Electron Physics, Nat. Acad. of Sci. of Ukraine

DOI:

https://doi.org/10.15407/ujpe70.3.206

Keywords:

amorphous semiconductors, X-ray diffraction, Raman spectroscopy, photochemical reactions, oxidation

Abstract

As2S3 : Ag glasses (up to 10 at.% Ag) were prepared by the melt quenching. Their amorphous structure is confirmed by X-ray diffraction and Raman spectroscopy. No noticeable changes in the Raman spectra with increasing Ag content are revealed at the excitation by a 671 nm laser or by a near-bandgap laser (λexc = 532 nm) at the low power density Pexc = 4 kW/cm2. Meanwhile, for the samples with Ag content above 4 at.% at the excitation by λexc = 532 nm at a higher Pexc = 40 kW/cm2, new narrow peaks emerge and are clearly identified as Raman features of arsenolite (As2O3) formed on the As2S3 : Ag glass surface under the intense illumination. This is the first Raman spectroscopic evidence of the visible-light photooxidation of As2S3-based glasses which previously was observed only under the illumination by ultraviolet light strongly absorbed by the surface layer leading to thermal decomposition of As2S3 in the illuminated area and oxidation of the vaporized arsenic atoms by oxygen from the ambient air. Most likely, the photooxidation is facilitated by the effect of silver on the glass network, reducing its rigidity, or, alternatively, the enhancement of photochemical reaction due to the plasmonic interaction of the incident light with residual ultrasmall silver nanoparticles existing in the glass sample.

References

1. K. Tanaka. Photoinduced deformations in chalcogenide glasses. In Amorphous Chalcogenides: Advances and Applications. Edited by R.P. Wang (Pan Stanford Publishing, 2014), p. 59 [ISBN: 978-0-429-07429-5].

2. K. Tanaka, K. Shimakawa. Amorphous chalcogenide semiconductors and related materials (Springer, 2021) [ISBN: 978-3-030-69598-9].

https://doi.org/10.1007/978-3-030-69598-9

3. S.N. Yannopoulos. Athermal photoelectronic effects in noncrystalline chalcogenides: Current status and beyond. In The World Scientific Reference of Amorphous Materials. Edited by A.V. Kolobov, K. Shimakawa (World Scientific, 2021), p. 251 [ISBN: 978-981-12-1594-0].

https://doi.org/10.1142/9789811215575_0009

4. Y. Azhniuk, V. Kryshenik, M. Rahaman, V. Loya, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Mass transport in amorphous As2S3 films due to directional light scattering under illumination by an oblique tightly focused beam. J. Non-Cryst. Solids 576, 121269 (2022).

https://doi.org/10.1016/j.jnoncrysol.2021.121269

5. B.J. Eggleton, B. Luther-Davies, K. Richardson. Chalcogenide photonics. Nature Photonics 5, 141 (2011).

https://doi.org/10.1038/nphoton.2011.309

6. V.M. Kryshenik, Yu.M. Azhniuk, V.S. Kovtunenko. Alloptical patterning in azobenzene polymers and amorphous chalcogenides. J. Non-Cryst. Solids 512, 112 (2019).

https://doi.org/10.1016/j.jnoncrysol.2019.02.019

7. L. Li, H. Lin, S. Qiao, Y. Zou, S. Danto, K. Richardson, J.D. Musgraves, N. Lu, J. Hu. Integrated flexible chalcogenide glass photonic devices. Nature Photonics 8, 643 (2014).

https://doi.org/10.1038/nphoton.2014.138

8. V.M. Kryshenik. Dynamic photoinduced changes of optical characteristics and effect of optical memory in amorphous As-S film-based waveguides. J. Non-Cryst. Solids 585, 121528 (2022).

https://doi.org/10.1016/j.jnoncrysol.2022.121528

9. A. Kovalskiy, J. Cech, M. Vlcek, C.M. Waits, M. Dubey, W.R. Heffner, H. Jain, Chalcogenide glass e-beam and photoresists for ultrathin grayscale patterning. J. Micro/Nanolith. MEMS MOEMS 8, 043012 (2009).

https://doi.org/10.1117/1.3273966

10. L. Su, C.J. Rowlands, S.R. Elliott. Nanostructures fabricated in chalcogenide glass for use as surface-enhanced Raman scattering substrates. Opt. Lett. 34, 1645 (2009).

https://doi.org/10.1364/OL.34.001645

11. P.J. Allen, B.R. Johnson, B.J. Riley. Photo-oxidation of thermally evaporated As2S3 thin films. J. Optoelectron. Adv. Mater. 7, 1759 (2005).

12. P. Knotek, M. Vlcek, M. Kincl, L. Tichy. On the ultraviolet light induced oxidation of amorphous As2S3 film. Thin Solid Films 520, 5472 (2012).

https://doi.org/10.1016/j.tsf.2012.03.116

13. A. Kovalskiy, M. Vlcek, K. Palka, J. Buzek, J. YorkWinegar, J. Oelgoetz, R. Golovchak, O. Shpotyuk, H. Jain, Structural origin of surface transformations in arsenic sulfide thin films upon UV-irradiation. Appl. Surf. Sci. 394, 604 (2017).

https://doi.org/10.1016/j.apsusc.2016.10.002

14. Y. Azhniuk, D. Solonenko, V. Loya, I. Grytsyshche, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn. Raman evidence for surface oxidation of amorphous As2S3 thin films under ultraviolet irradiation. Appl. Surf. Sci. 467-468, 119 (2019).

https://doi.org/10.1016/j.apsusc.2018.10.157

15. Yu.M. Azhniuk, V.M. Dzhagan, D. Solonenko, A. Mukherjee, V.Yu. Loya, I.V. Grytsyshche, V.V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn, Laser annealing-induced formation of CdS nanocrystals in Cd-doped amorphous As2S3 thin films. Phys. Status Solidi B 256, 1800298 (2019).

https://doi.org/10.1002/pssb.201800298

16. Y.M. Azhniuk, V.V. Lopushansky, V.Yu. Loya, V.M. Kryshenik, V.M. Dzhagan, A.V. Gomonnai, D.R.T. Zahn. Raman study of laser-induced formation of II-VI nanocrystals in zinc-doped As-S(Se) films. Appl. Nanosci. 10, 4831 (2020).

https://doi.org/10.1007/s13204-020-01269-2

17. M. Ohta, M. Tsutsumi, F. Izumi, S. Ueno. Phase separation and structural change accompanying the introduction of silver to arsenic trisulphide glass. J. Mater. Sci. 17, 2431 (1982).

https://doi.org/10.1007/BF00543755

18. F. Kyriazis, A. Chrissanthopoulos, V. Dracopoulos, M. Krbal, T. Wagner, M. Frumar, S.N. Yannopoulos, Effect of silver doping on the structure and phase separation of sulfur-rich As-S glasses: Raman and SEM studies. J. Non-Cryst. Solids 355, 2010 (2009).

https://doi.org/10.1016/j.jnoncrysol.2009.04.070

19. Th.Ch. Hasapis, K.S. Andrikopoulos, E. Hatzikraniotis, V. Dracopoulos, T. Wagner, S.N. Yannopoulos, K.M. Paraskevopoulos, Vibrational properties of silver-doped arsenic chalcogenide bulk glasses. AIP Conf. Proc. 1203, 283 (2010).

https://doi.org/10.1063/1.3322451

20. K.S. Andrikopoulos, J. Arvanitidis, V. Dracopoulos, D. Christofilos, T. Wagner, S.N. Yannopoulos. Nanoindentation and Raman studies of phase-separated Ag-As-S glasses. Appl. Phys. Lett. 99, 171911 (2011).

https://doi.org/10.1063/1.3651494

21. M. Frumar, T. Wagner. Ag doped chalcogenide glasses and their applications. Curr. Opin. Solid State Mater. Sci. 7, 117 (2003).

https://doi.org/10.1016/S1359-0286(03)00044-5

22. D.G. Georgiev, P. Boolchand, K.A. Jackson, Intrinsic nanoscale phase separation of bulk As2S3 glass. Phil. Mag. 83, 2941 (2003).

https://doi.org/10.1080/1478643031000151196

23. P. Chen, C. Holbrook, P. Boolchand, D.G. Georgiev, K.A. Jackson, M. Micoulaut. Intermediate phase, network demixing, boson and floppy modes, and compositional trends in glass transition temperatures of binary AsxS1−x system. Phys. Rev. B 78, 224208 (2008).

https://doi.org/10.1103/PhysRevB.78.224208

24. R. Holomb, M. Veres, V. Mitsa. Ring-, branchy-, and cagelike AsnSm nanoclusters in the structure of amorphous semiconductors: ab initio and Raman study. J. Optoelectron. Adv. Mater. 11, 917 (2009).

25. R. Golovchak, O. Shpotyuk, J.S. McCloy, B.J. Riley, C.F. Windisch, S.K. Sundaram, A. Kovalskiy, H. Jain, Structural model of homogeneous As-S glasses derived from Raman spectroscopy and high-resolution XPS. Phil. Mag. 90, 4489 (2010).

https://doi.org/10.1080/14786435.2010.510455

26. S.N. Yannopoulos, K.S. Andrikopoulos, D.Th. Kastrissios, G.N. Papatheodorou. Origin of photoinduced defects in glassy As2S3 under band gap illumination studied by Raman scattering: A revisory approach. Phys. Status Solidi B 249, 2005 (2012).

https://doi.org/10.1002/pssb.201200385

27. D. Tsiulyanu, M. Veres, R. Holomb, M. Ciobanu. Raman scattering evidence on the correlation of middle range order and structural self-organization of As-S-Ge glasses in the intermediate phase region, J. Non-Cryst. Solids 609 (2023) 122255. J. Non-Cryst. Solids 609, 122255 (2023).

https://doi.org/10.1016/j.jnoncrysol.2023.122255

28. O. Alekperov, Z. Jahangirli, R. Paucar. First-principles lattice dynamics and Raman scattering in ionic conductor β-Ag2S. Phys. Status Solidi B 253, 2049 (2016).

https://doi.org/10.1002/pssb.201552784

T. W´agner, Mir. Vlˇcek, S.O. Kasap, Mil. Vlˇcek, M. Frumar. Changing the composition of Ag-As-S amorphous films using photo-induced solid state reaction. J. NonCryst. Solids 284, 168 (2001).

https://doi.org/10.1016/S0022-3093(01)00397-0

30. M. Krbal, T. Wagner, T. Kohoutek, P. Nemec, J. Orava, M. Frumar. The comparison of Ag-As33S67 films prepared by thermal evaporation (TE), spin-coating (SC) and a pulsed laser deposition (PLD. J. Phys. Chem. Solids 68, 953 (2007).

https://doi.org/10.1016/j.jpcs.2007.03.036

31. A. Stronski, L. Revutska, A. Meshalkin, O. Paiuk, E. Achimova, A. Korchovyi, K. Shportko, O. Gudymenko, A. Prisacar, A. Gubanova, G. Triduh. Structural properties of Ag-As-S chalcogenide glasses in phase separation region and their application in holographic grating recording. Opt. Mater. 94, 393 (2019).

https://doi.org/10.1016/j.optmat.2019.06.016

32. S.J. Gilliam, C.N. Merrow, S.J. Kirkby, J.O. Jensen, D. Zeroka, A. Banerjee. Raman spectroscopy of arsenolite: crystalline cubic As4O6. J. Solid State Chem. 173, 54 (2003).

https://doi.org/10.1016/S0022-4596(03)00082-3

33. Yu.M. Azhniuk, D. Solonenko, V.Yu. Loya, V.M. Kryshenik, V.V. Lopushansky, A. Mukherjee, A.V. Gomonnai, D.R.T. Zahn, Flexoelectric and local heating effects on CdSe nanocrystals in amorphous As2Se3 films. Mater. Res. Expr. 6, 095913 (2019).

https://doi.org/10.1088/2053-1591/ab3241

34. H. Fritzsche. Photo-induced fluidity of chalcogenide glasses. Solid State Commun. 99, 153 (1996).

https://doi.org/10.1016/0038-1098(96)00218-9

35. K. Tanaka, K. Shimakawa. Mechanisms of photoinduced fluidity in chalcogenide glasses: Molecular orbital analyses. J. Non-Cryst. Solids 481, 579 (2018).

https://doi.org/10.1016/j.jnoncrysol.2017.12.005

36. Y. Azhniuk, V. Dzhagan, D. Solonenko, V. Loya, I. Grytsyshche, V. Lopushansky, A.V. Gomonnai, D.R.T. Zahn, In-doped As2Se3 thin films studied by Raman and X-ray photoelectron spectroscopies. Appl. Surf. Sci. 471, 943 (2019).

https://doi.org/10.1016/j.apsusc.2018.12.097

37. I.P. Studenyak, M. Kranjˇcec, M.M. Pop. Urbach absorption edge and disordering processes in As2S3 thin films. J. Non-Cryst. Solids 357, 3866 (2011).

https://doi.org/10.1016/j.jnoncrysol.2011.07.032

38. O.I. Shpak, M.M. Pop, I.I. Shpak, I.P. Studenyak. Refractometric studies of chalcogenide glasses in Ag-As-S system. Opt. Mater. 35, 297 (2012).

https://doi.org/10.1016/j.optmat.2012.09.004

39. Y. Azhniuk, V. Lopushansky, V. Loya, D. Solonenko, V. Kryshenik, I.M. Voynarovych, A.V. Gomonnai, D.R.T. Zahn. Raman evidence for the oxidation of amorphous arsenic chalcogenide film surfaces under visible light. Mater. Res. Expr. 11, 046405 (2024).

https://doi.org/10.1088/2053-1591/ad3f7b

40. F.T.H. Broers, K. Janssens, J. Nelson Weker, S.M. Webb, A. Mehta, F. Meirer, K. Keune. Two pathways for the degradation of orpiment pigment (As2S3) found in paintings. J. Amer. Chem. Soc. 145, 8847 (2023).

https://doi.org/10.1021/jacs.2c12271

41. Y. Azhniuk, V. Lopushansky, S. Hasynets, V. Kryshenik, A.V. Gomonnai, D.R.T. Zahn. Photoinduced transformations in (As1−xBixS3) glass observed by Raman spectroscopy. J. Raman Spectrosc. 55, 637 (2024).

https://doi.org/10.1002/jrs.6658

42. K. Keune, J. Mass, F. Meirer, C. Pottasch, A. van Loon, A. Hull, J. Church, E. Pouyet, M. Cotte, A. Mehta. Tracking the transformation and transport of arsenic sulfide pigments in paints: synchrotron-based X-ray micro-analyses. J. Anal. At. Spectrom. 30, 813 (2015).

https://doi.org/10.1039/C4JA00424H

43. M. Vermeulen, J. Sanyova, K. Janssens, G. Nuyts, S. De Meyer, K. De Wael. The darkening of copper- or lead-based pigments explained by a structural modification of natural orpiment: a spectroscopic and electrochemical study. J. Anal. At. Spectrom. 32, 1331 (2017).

https://doi.org/10.1039/C7JA00047B

44. A. Kovalskiy, A. Ganjoo, S. Khalid, H. Jain. Combined high-resolution XPS and EXAFS study of Ag photodissolution in a-As2S3 thin film, J. Non-Cryst. Solids 356, 2332 (2010).

https://doi.org/10.1016/j.jnoncrysol.2010.02.021

45. M. Popescu, F. Sava, A. Lorinczi, A. Velea, M. Leonovici, S. Zamfira. Silver/amorphous As2S3 heterostructure. J. Optoelectron. Adv. Mater. 11, 1586 (2009).

46. F. Sava, M. Popescu, A. L¨orinczi, A. Velea. Possible mechanism of Ag photodiffusion in a-As2S3 thin films. Phys. Status Solidi B 250, 999 (2013).

https://doi.org/10.1002/pssb.201248517

47. K. Ogusu, Y. Hosokawa, S. Maeda, M. Minakata, H. Li. Photo-oxidation of As2Se3, Ag-As2Se3, and Cu-As2Se3 chalcogenide films. J. Non-Cryst. Solids 351, 3132 (2005).

https://doi.org/10.1016/j.jnoncrysol.2005.07.034

48. A.V. Stronski, M. Vlˇcek, A.I. Stetsun, A. Sklenaˇr, P.E. Shepeliavyi. Raman spectra of Ag- and Cu- photodoped chalcogenide films. Semicond. Phys. Quantum Electron. Optoelectron. 2 (2), 63 (1999).

https://doi.org/10.15407/spqeo2.02.063

49. J. Tasseva, R. Todorov, Tz. Babeva, K. Petkov. Structural and optical characterization of Ag photo-doped thin As40S60−xSex films for non-linear applications. J. Opt. 12, 065601 (2010).

https://doi.org/10.1088/2040-8978/12/6/065601

50. J. Orava, T. Wagner, M. Krbal, T. Kohoutek, Mil. Vlcek, L. Benes, E. Kotulanova, P. Bezdicka, P. Klapetek, M. Frumar. Selective wet-etching of amorphous/crystallized Ag-As-S and Ag-As-S-Se chalcogenide thin films. J. Phys. Chem. Solids 68, 1008 (2007).

https://doi.org/10.1016/j.jpcs.2007.03.056

51. K.O. ˇCajko, M. Dimitrievska, D.L. Sekuli´c, D.M. Petrovi´c, S.R. Luki´c-Petrovi´c. Ag-doped As-S-Se chalcogenide glasses: a correlative study of structural and dielectrical properties. J. Mater. Sci.: Mater. Electron. 32, 6688 (2021).

https://doi.org/10.1007/s10854-021-05384-w

52. I.M. Bolesta, M.M. Vakiv, V.G. Haiduchok, I.I. Kolych, A.A. Kushnir, I.M. Rovetskyy, Yu.M. Furgala. Plasmon absorption by silver nanoparticles on LiNbO3 surface. Ukr. J. Phys. 62, 39 (2017).

https://doi.org/10.15407/ujpe62.01.0039

53. I. Indutnyi, V. Mynko, M. Sopinskyy, P. Lytvyn. Impact of surface plasmon polaritons on silver photodiffusion into As2S3 film. Plasmonics 16, 181 (2021).

https://doi.org/10.1007/s11468-020-01275-8

54. V.O. Yukhymchuk, V.M. Rubish, V.M. Dzhagan, O.M. Hreshchuk, O.F. Isaieva, N.V. Mazur, M.O. Durkot, A.A. Kryuchyn, V.K. Kyrylenko, V.M. Novichenko, V.V. Kremenytskyi, Z.V. Maksimenko, M.Ya. Valakh. Surface-enhanced Raman scattering of As2S3 and Se thin films formed on Au nanostructures. Semicond. Phys. Quantum Electron. Optoelectron. 26, 49 (2023).

55. I.Z. Indutnyi, V.O. Yukhymchuk, V.I. Mynko, S.V. Mamykin, N.V. Mazur, O.F. Isaieva, V.M. Dzhagan, V.A. Danko, V.S. Yefanov, A.A. Korchovyy, P.M. Lytvyn. Shape effect of laterally ordered nanostructures on the efficiency of surface-enhanced Raman scattering. Ukr. J. Phys. 69, 11 (2024).

https://doi.org/10.15407/ujpe69.1.11

56. M. Ceppatelli, D. Scelta, M. Serrano-Ruiz, K. Dziubek, M. Morana, V. Svitlyk, G. Garbarino, T. Por¸eba, M. Mezouar, M. Peruzzini, R. Bini. Single-bonded cubic AsN from high-pressure and high-temperature chemical reactivity of arsenic and nitrogen. Angew. Chem. Int. Ed. 66, e202114191 (2022).

https://doi.org/10.1002/anie.202114191

57. T. Chivers, C. Lau. Raman spectroscopic identification of the S4N− and S3N− ions in blue solutions of sulfur in liquid ammonia. Inorg. Chem. 21, 453 (1982).

https://doi.org/10.1021/ic00131a089

58. S.H. Aryal, K.M. Page, S.M. Hyatt, R. Liu. Reassignment of fundamental vibrational modes of cyclic S4N3 cation. Spectrochim. Acta A 56, 851 (2000).

https://doi.org/10.1016/S1386-1425(99)00180-8

Downloads

Published

2025-03-19

How to Cite

Azhniuk, Y., Pogodin, A., Lopushansky, V., Filep, M., Kryshenik, V., Voynarovych, I., & Gomonnai, A. (2025). Raman Study of Visible-Light Photooxidation of As2S3 : Ag Glasses. Ukrainian Journal of Physics, 70(3), 206. https://doi.org/10.15407/ujpe70.3.206

Issue

Section

Semiconductors and dielectrics

Most read articles by the same author(s)

Similar Articles

<< < 1 2 3 4 5 6 7 8 9 > >> 

You may also start an advanced similarity search for this article.