Damping of Magnetoelastic Waves


  • V. G. Bar’yakhtar Institute of Magnetism, Nat. Acad. of Sci. of Ukraine and Ministry of Education and Science of Ukraine
  • A. G. Danilevich Institute of Magnetism, Nat. Acad of Sci. of Ukraine and Ministry of Education and Science of Ukraine, National Technical University of Ukraine “Igor Sikorsky Kyiv Polytechnic Institute”




magnetoelastic interaction, dissipative function, dispersion law, uniaxial ferromagnet, relaxation


A general method for constructing a model of the dissipative function describing the relaxation processes induced by the damping of coupled magnetoacoustic waves in magnetically ordered materials has been developed. The obtained model is based on the symmetry of the magnet and describes both exchange and relativistic interactions in the crystal. The model accounts for the contributions of both the magnetic and elastic subsystems to the dissipation, as well asthe relaxation associated with the magnetoelastic interaction. The dispersion law for coupled magnetoelastic waves is calculated in the case of a uniaxial ferromagnet of the “easy axis” type. It is shown that the contribution of the magnetoelastic interaction to dissipative processes can play a significant role in the case of magnetoacoustic resonance.


C. Kittel. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958). https://doi.org/10.1103/PhysRev.110.836

A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii. Coupled magnetoelastic waves in ferromagnetic media and ferroacoustic resonance. JETP 8, 157 (1959).

A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii. Spin Waves (North Holland, 1968).

V.G. Bar'yakhtar, E.A. Turov. Magnetoelastic excitations. In Spin Waves and Magnetic Excitations. Edited by A.S. Borovik-Romanov, S.K. Sinha (North Holland, 1988), Pt. 2, p. 333. https://doi.org/10.1016/B978-0-444-87078-0.50012-9

V.G. Bar'yakhtar, A.G. Danilevich. Magnetoelastic waves in ferromagnets in the vicinity of lattice structural phase transitions. Ukr. J. Phys. 63, 836 (2018). https://doi.org/10.15407/ujpe63.9.836

V.G. Bar'yakhtar, A.G. Danilevich, V.A. L'vov. Coupled magnetoelastic waves in ferromagnetic shape-memory alloys. Phys. Rev. B 84, 134304 (2011). https://doi.org/10.1103/PhysRevB.84.134304

A.G. Danilevich. The influence of magnetoelastic interaction on the first transverse sound in a ferromagnet of cubic symmetry in a vicinity of the martensitic transformation. Ukr. J. Phys. 59, 1007 (2014). https://doi.org/10.15407/ujpe59.10.1007

B.N. Sahu, R. Prabhu, N. Venkataramani, Sh. Prasad, R. Krishnan, A. Nabialek, O.M. Chumak, R. Zuberek. Magnetostriction studies in nano-crystalline zinc ferrite thin films by strain modulated ferromagnetic resonance. J. Magn. Magn. Mater. 460, 203 (2018). https://doi.org/10.1016/j.jmmm.2018.04.012

K. Dey, S. Sauerland, J. Werner, Y. Skourski, M. Abdel-Hafiez, R. Bag, S. Singh, R. Klingeler. Magnetic phase diagram and magnetoelastic coupling of NiTiO3. Phys. Rev. B 101, 195122 (2020). https://doi.org/10.1103/PhysRevB.101.195122

A. Mazzamurro, Ya. Dusch, Ph. Pernod, O. Bou Matar, A. Addad, A. Talbi, N. Tiercelin. Giant magnetoelastic coupling in a Love acoustic waveguide based on TbCo/FeCo nanostructured film on ST-cut quartz. Phys. Rev. Appl. 13, 044001 (2020). https://doi.org/10.1103/PhysRevApplied.13.044001

Sh. Tateno, Yu. Nozaki. Highly nonreciprocal spin waves excited by magnetoelastic coupling in a Ni/Si bilayer. Phys. Rev. Appl. 13, 034074 (2020). https://doi.org/10.1103/PhysRevApplied.13.034074

R. Verba, I. Lisenkov, I. Krivorotov, V. Tiberkevich, A. Slavin. Nonreciprocal surface acoustic waves in multilayers with magnetoelastic and interfacial Dzyaloshinskii-Moriya interactions. Phys. Rev. Appl. 9, 064014 (2018). https://doi.org/10.1103/PhysRevApplied.9.064014

V.V. Kruglyak, S.O. Demokritov, D. Grundler. Magnonics. J. Phys. D 43, 264001 (2010). https://doi.org/10.1088/0022-3727/43/26/264001

A.M. Pogorilyi, S.M. Ryabchenko, O.I. Tovstolytkin. Spintronics. Main phenomena. Development trends. Ukr. Fiz. Zh. Oglyad. 6, 37 (2010) (in Ukrainian).

T.L. Gilbert. A Lagrangian formulation of the gyromagnetic equation of the magnetization fields. Phys. Rev. 100, 1243 (1955).

L.D. Landau, E.M. Lifshits. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies, Phys. Zs. Sowjet. 8, 153 (1935), reprinted in Ukr. J. Phys., 53, Special Issue, 14 (2008).

V.G. Bar'yakhtar. Phenomenological description of relaxation processes in magnetic materials. JETP 60, 863 (1984).

V.G. Bar'yakhtar, A.G. Danilevich. Spin wave damping under spin orientation phase transitions. Fiz. Nizk. Temp. 32, 1010 (2006) (in Russian). https://doi.org/10.1063/1.2219498

V.G. Bar'yakhtar, A.G. Danilevich. Dissipative function of magnetic media. Fiz. Nizk. Temp. 36, 385 (2010) (in Russian). https://doi.org/10.1063/1.3421029

V.G. Bar'yakhtar, B.A. Ivanov, V.N. Krivoruchko, A.G. Danilevich. Modern Problems of Magnetization Dynamics: From the Basics to Ultrafast Relaxation (Khimdzhest, 2013) (in Russian).

L.D. Landau, E.M. Lifshitz. Theory of Elasticity (Butterworth-Heinemann, 1986) [ISBN: 978-0-7506-2633-0].

L.D. Landau, E.M. Lifshitz. L.P. Pitaevskii. Electrodynamics of Continuous Media (Butterworth-Heinemann, 1984) [ISBN: 978-0-7506-2634-7]. https://doi.org/10.1016/B978-0-08-030275-1.50007-2

V.G. Bar'yakhtar, B.A. Ivanov, T.K. Sobolyeva, A.L. Sukstanskii. Theory of dynamical-soliton relaxation in ferromagnets. Zh. Eksp. Teor. Fiz. 91, 1454 (1986) (in Russian).

V.G. Bar'yakhtar, B.A. Ivanov, A.L. Sukstanskii, E.Yu. Melikhov. Soliton relaxation in magnets. Phys. Rev. B 56, 619 (1997). https://doi.org/10.1103/PhysRevB.56.619

V.G. Bar'yakhtar, B.A. Ivanov, K.A. Safaryan. On the phenomenological description of the damping of the domain walls in ferrite-garnets. Solid State Commun. 72, 1117 (1989). https://doi.org/10.1016/0038-1098(89)90257-3

E.G. Galkina, B.A. Ivanov, V.A. Stephanovich. Phenomenological theory of Bloch point relaxation. J. Magn. Magn. Mater. 118, 373 (1993). https://doi.org/10.1016/0304-8853(93)90441-4

V.G. Bar'yakhtar, V.M. Loktev, S.M. Ryabchenko. Rotational invariance and magnetoflexural oscillations of ferromagnetic plates and rods. JETP 61, 1040 (1985).

A.G. Danilevich. Spin wave damping stimulated by exchange interaction at spin-orientation phase transitions in hexagonal ferromagnets. Ukr. J. Phys. 51, 668 (2006).



How to Cite

Bar’yakhtar, V. G., & Danilevich, A. G. (2020). Damping of Magnetoelastic Waves. Ukrainian Journal of Physics, 65(10), 912. https://doi.org/10.15407/ujpe65.10.912



Physics of magnetic phenomena and physics of ferroics

Most read articles by the same author(s)

1 2 > >>