New FTIR and DFT Study of (CH3)2CO ··· HCl Hydrogen-Bonded Complex

Authors

  • G. Nurmurodova Institute of Engineering Physics, Samarkand State University named Sharof Rashidov
  • I. Doroshenko Institute of Engineering Physics, Samarkand State University named Sharof Rashidov, Taras Shevchenko National University of Kyiv
  • G. Murodov Institute of Engineering Physics, Samarkand State University named Sharof Rashidov
  • U. Khujamov Institute of Engineering Physics, Samarkand State University named Sharof Rashidov

DOI:

https://doi.org/10.15407/ujpe70.6.38`1

Keywords:

(CH3)2CO···HCl complex, IR spectrum, hydrogen bonding, AIM, RDG, NCI

Abstract

The study of hydrogen-bonded complexes is crucial for understanding intermolecular interactions that influence molecular structure, electron density distribution, and vibrational properties. In this work, we will investigate the acetone-hydrogen chloride (CH3)2CO···HCl complex using Fourier-transform infrared (FTIR) spectroscopy in cryogenic krypton and xenon solutions, alongside density functional theory (DFT) calculations. The experimental IR spectra reveal characteristic frequency shifts upon the complex formation, while the computational analysis provides insights into geometric and electronic structure changes. Topological analyses, including Atoms in Molecules (AIM) and Non-Covalent Interaction (NCI) approaches, confirm the presence and strength of hydrogen bonding. The study highlights solvent effects on vibrational properties and intermolecular interactions, advancing the understanding of the hydrogen bonding in complex molecular systems.

References

1. O. Mishchuk, I. Doroshenko, V. Sablinskas, V. Balevicius. Temperature evolution of cluster structure in n-hexanol, isolated in Ar and N2 matrices and in condensed states. Struct. Chem. 27, 243 (2016).

https://doi.org/10.1007/s11224-015-0692-7

2. E.N. Kozlovskaya, I. Doroshenko, V. Pogorelov, Ye. Vaskivsky, G.A. Pitsevich. Comparison of degrees of potentialenergy-surface anharmonicity for complexes and clusters with hydrogen bonds. J. Appl. Spectrosc. 84, 929 (2018).

https://doi.org/10.1007/s10812-018-0567-y

3. I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, L. Meyliev, B. Kuyliev. Molecular isomerization in n-propanol dimers. Ukr. J. Phys. 65, 291 (2020).

https://doi.org/10.15407/ujpe65.4.291

4. G.A. Pitsevich, E.N. Kozlovskaya, A.E. Malevich, I.Yu. Doroshenko, V.S. Satsunkevich, L.G.M. Pettersson. Some useful correlations for H-bonded systems. Mol. Cryst. Liq. Cryst. 696, 15 (2020).

https://doi.org/10.1080/15421406.2020.1731090

5. B. Golec, M. Mucha, M. Sa ldyka, A. Barnes, Z. Mielke. Formaldoxime hydrogen bonded complexes with ammonia and hydrogen chloride. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 136, 68 (2015).

https://doi.org/10.1016/j.saa.2013.11.017

6. H.A. Hushvaktov, F.H. Tukhvatullin, A. Jumabaev, U.N. Tashkenbaev, A.A. Absanov, B.G. Hudoyberdiev, B. Kuyliev. Raman spectra and ab initio calculation of a structure of aqueous solutions of methanol. J. Mol. Struc. 1131, 25 (2017).

https://doi.org/10.1016/j.molstruc.2016.10.061

7. A. Jumabaev, U. Holikulov, H. Hushvaktov, A. Absanov, L. Bulavin, Interaction of valine with water molecules: Raman and DFT study. Ukr. J. Phys. 67, 602 (2022).

https://doi.org/10.15407/ujpe67.8.602

8. D.S. Ahn, S.W. Park, I.S. Jeon, M.K. Lee, N.H. Kim, Y.H. Han, S. Lee. Effects of microsolvation on the structures and reactions of neutral and zwitterion alanine: Computational study. J. Phys. Chem. B 107, 14109 (2003).

https://doi.org/10.1021/jp031041v

9. L. Yang, X. Liu, J. Zhang, J. Xie. Effects of microsolvation on a SN2 reaction: Indirect atomistic dynamics and weakened suppression of reactivity. Phys. Chem. Chem. Phys. 19, 9992 (2017).

https://doi.org/10.1039/C7CP00294G

10. A. Vasylieva, I. Doroshenko, Ye. Vaskivskyi, Ye. Chernolevska, V. Pogorelov. FTIR study of condensed water structure. J. Mol. Struct. 1167, 232 (2018).

https://doi.org/10.1016/j.molstruc.2018.05.002

11. V. Balevicius, V. Sablinskas, I. Doroshenko, V. Pogorelov. Propanol clustering in argon matrix: 2D FTIR correlation spectroscopy. Ukr. J. Phys. 56, 855 (2011).

https://doi.org/10.15407/ujpe56.8.855

12. V. Pogorelov, Ye. Chernolevska, Ye. Vaskivskyi, L.G.M. Pettersson, I. Doroshenko, V. Sablinskas, V. Balevicius, Ju. Ceponkus, K. Kovaleva, A. Malevich, G. Pitsevich. Structural transformations in bulk and matrix-isolated methanol from measured and computed infrared spectroscopy. J. Mol. Liq. 216, 53 (2016).

https://doi.org/10.1016/j.molliq.2015.12.099

13. W.O. George, B.F. Jones, R. Lewis, J.M. Price. Computations of medium strength hydrogen bonds-complexes of mono-and bi-functional carbonyl and nitrile compounds with hydrogen chloride. Phys. Chem. Chem. Phys. 2, 4910 (2000).

https://doi.org/10.1039/b006028n

14. H.D. Mettee, J. E. Del Bene, S. I. Hauck. An experimental and theoretical study of the thermodynamic properties of the acetone-hydrogen chloride complex. J. Phys. Chem. 86, 5048 (1982).

https://doi.org/10.1021/j100223a003

15. D.S. Dudis, J.B. Everhart, T.M. Branch, S.S. Hunnicutt. Hydrogen bond energies of hydrogen chloride-carbonyl complexes. J. Phys. Chem. 100, 2083 (1996).

https://doi.org/10.1021/jp952169i

16. J. Saikia, B. Borah, T.G. Devi. Study of interacting mechanism of amino acid and Alzheimer's drug using vibrational techniques and computational method. J. Mol. Struc. 1227, 129664 (2020).

https://doi.org/10.1016/j.molstruc.2020.129664

17. I. Singh, A.A. El-Emam, Sh.K. Pathak, R. Srivastava, V.K. Shukla, O. Prasad, L. Sinha. Experimental and theoretical DFT (B3LYP, X3LYP, CAM-B3LYP and M06-2X) study on electronic structure, spectral features, hydrogen bonding and solvent effects of 4-methylthiadiazole-5-carboxylic acid. Mol. Simul. 45, 1029 (2019).

https://doi.org/10.1080/08927022.2019.1629434

18. Y. Sert, L.M. Singer, M. Findlater, H. Dogan, C. Cirak. Vibrational frequency analysis, FT-IR, DFT and M06-2X studies on tert-Butyl N-(thiophen2yl)carbamate. Spectrochim. Acta A Mol. Biomol. Spectrosc. 128, 46 (2014).

https://doi.org/10.1016/j.saa.2014.02.114

19. F. Akman, N. Issaoui, A.S. Kazachenko, Intermolecular hydrogen bond interactions in the thiourea/water complexes (Thio-(H2O)n) (n = 1, 5): X-ray, DFT, NBO, AIM, and RDG analyses. J. Mol. Model. 26, 161 (2020).

https://doi.org/10.1007/s00894-020-04423-3

20. M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb et al. Gaussian 09, Gaussian Inc, Wallingford CT, 2009.

21. R. Dennington, T. A. Keith, J. M. Millam. GaussView, Version 6.1, Semichem Inc., Shawnee Mission, KS, 2016.

22. T. Lu, F. Chen. Multiwfn: A multifunctional wavefunction analyzer. J. Comput. Chem. 33, 580 (2012).

https://doi.org/10.1002/jcc.22885

23. R.F.W. Bader. Atoms in molecules. Acc. Chem. Res. 18, 9 (1985).

https://doi.org/10.1021/ar00109a003

24. W. Humphrey, A. Dalke, K. Schulten. VMD: Visual molecular dynamics. J. Mol. Graph. 14, 33 (1996).

https://doi.org/10.1016/0263-7855(96)00018-5

25. Y. Bouteiller, Z. Latajka. Theoretical interpretation of acetone-HF infrared spectrum in the gas phase. J. Chem. Phys. 97, 145 (1992).

https://doi.org/10.1063/1.463613

26. V.P. Bulychev, K.G. Tokhadze. Comparative analysis of the H-F stretching band in absorption spectra of gas-phase complexes of HF with water, dimethyl ether, and acetone. J. Mol. Struct. 976, 255 (2010).

https://doi.org/10.1016/j.molstruc.2010.03.063

27. T.M. Vilela, M.A. Gon¸calves, R.C. Martins, M.J. Bazzana, A.A. Saczk, T.C. Ramalho, F.S. Felix. Solvent effects on the graphite surface targeting the construction of voltammetric sensors with potential applications in pharmaceutical area. Electroanalysis 35, e202300075 (2023).

https://doi.org/10.1002/elan.202300075

28. D. Tsering, P. Dey, T. Amin, A. Goswami, K.K. Kapoor, S.K. Seth. Combined experimental and theoretical studies of quinoxalinone-based spiropyrrolidines: Estimation of non-covalent interactions. J. Mol. Struct. 1318, 139343 (2024).

https://doi.org/10.1016/j.molstruc.2024.139343

29. C. Guerra, J. Burgos, L. Ayarde-Henr'ıquez, E. Chamorro. Formulating reduced density gradient approaches for noncovalent interactions. J. Phys. Chem. A 128, 6158 (2024).

https://doi.org/10.1021/acs.jpca.4c01667

30. A. B. Abraham, A. Y. Alzahrani, R. Thomas. Exploring non-covalent interactions between caffeine and ascorbic acid: Their significance in the physical chemistry of drug efficacy. Zeitschrift f¨ur Physikalische Chemie 238, 401 (2024).

https://doi.org/10.1515/zpch-2023-0390

31. A. A. Basha, A. Kubaib, M. Azam. Exploring the antiviral potency of γ-FP and PA compounds: Electronic characterization, non-covalent interaction analysis and docking profiling with emphasis on QTAIM aspects. Comp.Theor. Chem. 1231, 114412 (2024).

https://doi.org/10.1016/j.comptc.2023.114412

32. A. Rathika, V.J. Reeda, P. Divya. Synthesis, spectroscopic analysis (FT-IR, FT-Raman, UV, NMR), non-covalent interactions (RDG, IGM) and dynamic simulation on Bis (8-hydroxy quinoline) salicylate salicylic acid. J. Mol. Struct. 1310, 138231 (2024).

https://doi.org/10.1016/j.molstruc.2024.138231

33. A. Ramazani, M. Sheikhi, H. Yahyaei. Molecular structure, NMR, FMO, MEP and NBO analysis of ethyl-(Z)-3-phenyl-2-(5-phenyl-2H-1, 2, 3, 4-tetraazol-2-yl)-2-propenoate based on HF and DFT calculations. Chem. Methodol. 1, e48 (2017).

https://doi.org/10.22631/chemm.2017.95510.1006

34. A.J. Barnes. Molecular complexes of the hydrogen halides studied by matrix isolation infrared spectroscopy. J. Mol. Struct. 100, 259 (1983).

https://doi.org/10.1016/0022-2860(83)90096-0

Published

2025-06-28

How to Cite

Nurmurodova, G., Doroshenko, I., Murodov, G., & Khujamov, U. (2025). New FTIR and DFT Study of (CH3)2CO ··· HCl Hydrogen-Bonded Complex. Ukrainian Journal of Physics, 70(6), 38`1. https://doi.org/10.15407/ujpe70.6.38`1

Issue

Section

Physics of liquids and liquid systems, biophysics and medical physics

Most read articles by the same author(s)

1 2 > >> 

Similar Articles

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 > >> 

You may also start an advanced similarity search for this article.