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ON THE EXCITATION MECHANISM OF HYBRID
PLASMON-POLARITONS IN SEMICONDUCTORS

The influence of direct current on the dynamics of plasmon-polaritons in semiconductors has
been analyzed. It is shown that the counter motion of macroscopic continua of electrons and
holes induced by an external electromotive force leads to the appearance of unstable additional
hybrid bulk and surface plasmons, as well as plasmon-polaritons, which are “genetically” re-
lated to both electrons and holes. The dispersion law and the increment and decrement of the
amplitudes of the dynamic variables of additional hybrid plasmons and plasmon-polaritons are
demonstrated to substantially depend on the stationary motion velocity of charged particles as-
sociated with the constant direct current. It is shown that one of the solutions of the dispersion
equation for surface plasmon-polaritons corresponds to “exotic” bulk plasmon-polaritons, which
propagate from the air-semiconductor interface into the depth of contacting media. The insta-
bility of additional hybrid plasmons and plasmon-polaritons can be used as the basis for a simple
method of excitating additional hybrid plasmons and plasmon-polaritons in semiconductors.
K e yw o r d s: electrons, holes, electric field, polarization, electric current density, plasmon
frequency, spatial dispersion, dispersion equation, instability, bulk plasmons, surface plasmons,
bulk polaritons, surface polaritons, increment, decrement.

1. Introduction

Currently, the considerable attention is paid to the
study of plasmon and plasmon-polariton states in
semiconductors and metals [1–6]. This occurs due
to their promising applications, in particular, in
such domains as nanophotonics and optoelectronics,
plasmon biosensors, plasmon-polariton-based lasers,
high-resolution imaging and optical microscopes, and
radiophysics of electromagnetic waves in the terahertz
range.
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An important issue in plasmonics is the search for
new excitation mechanisms of plasmons and plasmon-
polaritons in semiconductors and metals. Much at-
tention is paid to the terahertz frequency range
𝜔 = (1011÷1.5 × 1013) Hz, which is adjacent to the
infrared frequency range. Terahertz issues are cur-
rently actively discussed in a considerable number of
specialized publications, in particular, in works [7–
13]. For instance, the effect of plasmon instability,
which arises in a ballistic field-effect transistor due
to the counter motion of electrons as a result of their
bounce from a potential barrier, was analyzed in work
[7] in the hydrodynamic approximation. The cited au-
thors concluded that such a phenomenon can be used
to generate far-infrared electromagnetic radiation.

In work [8], the interaction of drifting electrons
with optical phonons in semiconductors was ana-
lyzed. The cited author considered three physical sys-
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tems, namely, a three-dimensional electron gas in
a bulk sample, a two-dimensional electron gas in a
quantum well, and a two-dimensional electron gas in
a quantum well under a metal electrode. It was shown
that the interaction of electrons with optical phonons
can lead to the instability of electron subsystem. The
author also concluded that such a phenomenon can
be used as a generator or amplifier of terahertz elec-
tromagnetic radiation.

In work [9], a theoretical model of terahertz insta-
bility of optical phonons was developed, which arises
due to the interaction of optical phonons with drifting
solid-state plasma. This model predicts the possibil-
ity of using optical phonon instability to create active
terahertz electronics devices.

In work [10], a hybrid system consisting of a dipole
nanoparticle and a quantum well was considered. The
cited authors showed that the electrostatic coupling
between the nanoparticle and the quantum well dur-
ing the drift of “two-dimensional” electrons leads to
the emergence of electrical instability in the terahertz
frequency range. The authors concluded that such an
instability can be considered as a new mechanism for
the generation of terahertz electromagnetic radiation.

In work [11], the generation of terahertz electro-
magnetic radiation by femtosecond lasers in the opti-
cal range was experimentally studied.

By the efforts of a large scientific team [12], the
effect of terahertz electromagnetic radiation amplifi-
cation was experimentally recorded, when the radia-
tion passed through planar nanostructures based on
graphene; the effect takes place due to the excitation
of plasmons by an electric current. The experimental
results obtained in this work open a way to the cre-
ation of terahertz radiation amplifiers based on planar
plasmons.

Finally, in work [13], experimental methods for
the effective generation of terahertz surface plasmon-
polaritons using promising technological methods
of photonic excitation of surface plasmon-polaritons
were analyzed in detail.

A review of relevant publications [7–13] testifies to
the challenging character of scientific research in the
radiophysics of terahertz electromagnetic radiation.

The presented work is also aimed at finding
new methods for generating terahertz plasmons and
plasmon-polaritons using the instability of solid-state
plasma. For this purpose, we will consider the effect
of direct electric current on the dynamics of plas-

mons and plasmon-polaritons (quasiparticles), which
are “genetically” related to concentration oscillations
of electric charges (electrons and holes) in semicon-
ductors. Such an influence evidently follows from the
fact that the motion of a continuum of charged parti-
cles with the oscillating concentration is accompanied
by at least the Doppler effect.

An analysis showed that the counter motion of
macroscopic continua of electrons and holes induced
by an external electromotive force that stimulates a
constant electric current in a semiconductor leads to
the appearance of unstable additional hybrid bulk
and surface quasiparticles, which are “genetically” re-
lated to both electrons and holes.

The dispersion law and the increment and decre-
ment of the amplitudes of the dynamic variables of
additional hybrid quasiparticles (AHQPs) substan-
tially depend on the stationary velocity of motion of
charged particles in the semiconductor. The instabil-
ity of AHQPs can be considered as a simple excita-
tion mechanism of additional hybrid plasmons and
plasmon-polaritons in semiconductors. Model calcu-
lations of the dispersion laws and the increment and
decrement of the amplitudes of dynamic variables of
AHQPs were performed in this work using germa-
nium (Ge) and indium antimonide (InSb) as exam-
ples of semiconductors. The calculation parameters of
these semiconductors were taken from the electronic
reference [14] are quoted in Table.

In particular, the effective masses of electrons, 𝑚*
𝑒,

and holes, 𝑚*
ℎ, in Ge are of the same order, whereas,

in InSb, the effective mass of hole, 𝑚*
ℎ, is two or-

ders of magnitude larger than the effective mass of
electron, 𝑚*

𝑒. Similar relationships are also charac-
teristic of the electron, 𝜇𝑒, and hole, 𝜇ℎ, mobilities
in the examined semiconductors. It turned out that
the AHQP frequencies in Ge and InSb belong to the
terahertz frequency ranze.

Calculations showed that the parameter ratios
𝑚*

𝑒/𝑚
*
ℎ and 𝜇𝑒/𝜇ℎ affect qualitatively and quanti-

tatively the dispersion laws and the increment and
decrement of the amplitudes of the dynamic variables
of AHQPs in semiconductors.

2. Dielectric Permittivity
of a Semiconductor Through Which
a Direct Electric Current Flows

In solid-state plasmonics, an adequate model is
needed for the dielectric permittivity of the medium,
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Main parameters of germanium and indium antimonide [14]

Parameters
Germanium (Ge) Indium antimonide (InSb)

Electrons Holes Electrons Holes

Plasma frequency (𝜔𝑝) 1.2× 1013 1/s 1.6× 1013 1/s 3.6× 1012 1/s 3.2× 1011 1/s

Mobility (𝜇) 13.01 cm2

stat. V·s 6.34 cm2

stat. V·s 2.6× 103 cm2

stat. V·s 2.0 cm2

stat. V·s

Critical electrostatic
field (𝐸kr) 3.0× 106 stat. V

cm 3.0× 106 stat. V
cm 1.5× 103 stat. V

cm 1.5× 103 stat. B
cm

𝜀 = 𝜀(𝜔,k), where 𝜔 is the cyclic frequency, and k is
the wave vector of quasiparticles. To construct the di-
electric constant of a semiconductor, we choose such
macroscopic quantities as the electron and hole con-
centrations 𝑛𝑒,ℎ = 𝑛𝑒,ℎ(𝑡, r) and the velocites of mo-
tion v𝑒,ℎ = v𝑒,ℎ(𝑡, r) of infinitely small macroscopic
volumes filled with electrons and holes, respectively,
as dynamic quantities.

In turn, the dynamic quantities 𝑛𝑒,ℎ and v𝑒,ℎ de-
termine the concentrations of negative and positive
electric charges

𝜌𝑓𝑒 = −𝑞𝑛𝑓𝑒, 𝜌𝑓ℎ = 𝑞𝑛𝑓ℎ, 𝑞 = −𝑒 (1)

and the electric current densities

j𝑓𝑒 = −𝑞𝑛𝑓𝑒v𝑓𝑒, j𝑓ℎ = 𝑞𝑛𝑓ℎv𝑓ℎ, (2)

which satisfy the electric charge conservation laws
(the laws of continuity),(︁
∇ · j𝑓𝑒

)︁
+

𝜕𝜌𝑓𝑒
𝜕𝑡

= 0,
(︁
∇ · j𝑓ℎ

)︁
+

𝜕𝜌𝑓ℎ
𝜕𝑡

= 0. (3)

Below, we will assume that the electric charge con-
centrations 𝑛𝑓(𝑒,ℎ) and the electron and hole velocities
v𝑓(𝑒,ℎ) have two components, namely, the stationary
components 𝑛0(𝑒,ℎ) and v0(𝑒,ℎ), and the components
𝑛𝑒,ℎ and v𝑒,ℎ induced by the fluctuations of the elec-
tric charge concentration According to this assump-
tion, the dynamic variables of the problem take the
following representation:

𝑛𝑓𝑒 = 𝑛0𝑒 + 𝑛𝑒(𝑡, r), v𝑓𝑒 = v0𝑒 + v𝑒(𝑡, r),

𝑛𝑓ℎ = 𝑛0ℎ + 𝑛ℎ(𝑡, r), v𝑓ℎ = v0ℎ + vℎ(𝑡, r),

𝑛𝑒 ≪ 𝑛0𝑒 = const, 𝑛ℎ ≪ 𝑛0ℎ = const,

v𝑒 ≪ v0𝑒 = const, vℎ ≪ v0ℎ = const.

(4)

As a result of formulas (2) and (4), we obtain the
following expressions for the electric current densities:

j𝑓𝑒 ≃ −𝑞(𝑛0𝑒v0𝑒 + 𝑛0𝑒v𝑒 + 𝑛𝑒v0𝑒),

j𝑓ℎ ≃ 𝑞(𝑛0ℎv0ℎ + 𝑛0ℎvℎ + 𝑛ℎv0ℎ).
(5)

The closed system of dynamic equations for the re-
searched problem includes the laws of conservation
for the electric charges, the equations of motion for
the infinitesimal macroscopic volumes filled with elec-
trons and holes, and the electrostatic Maxwell equa-
tion,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︁
∇ · v𝑒

)︁
𝑛0𝑒 +

(︁
v0𝑒 · ∇

)︁
𝑛𝑒 +

𝜕𝑛𝑒

𝜕𝑡
= 0,(︁

∇ · vℎ

)︁
𝑛0ℎ +

(︁
v0ℎ · ∇

)︁
𝑛ℎ +

𝜕𝑛ℎ

𝜕𝑡
= 0,

𝜕v𝑒

𝜕𝑡
+
(︁
v0𝑒 · ∇

)︁
v𝑒 = − 𝑞

𝑚*
𝑒

E,

𝜕vℎ

𝜕𝑡
+

(︁
v0ℎ · ∇

)︁
vℎ =

𝑞

𝑚*
ℎ

E,

𝜀0
(︀
∇ ·E

)︀
= −4𝜋𝑞

(︀
𝑛𝑒 − 𝑛ℎ

)︀
,

(6)

where 𝜀0 is the static permittivity of semiconductor.
When writing the dynamic equations for quasiparti-
cles in Eqs. (6), it was taken into account that the
radius-vector r in the dynamic variables is connected
with the center of mass of an infinitely small macro-
scopic volume filled with electric charges. Therefore,
when writing down the accelerations in Eqs. (6), the
substantial (material) Lagrange derivative was used,
by analogy with the hydrodynamic approximation in
the plasma theory [15]. The stationary velocities of
electrons and holes are determined by the electro-
static field strength E0 (induced by an external elec-
tromotive force). Hence, v0(𝑒,ℎ) = 𝜇𝑒,ℎE0.
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We seek solutions to the system of equations (6) in
the form of monochromatic plane waves,

𝑛𝑒, 𝑛ℎ,v𝑒,vℎ,E ∼ 𝑒𝑖(𝜔𝑡−(k·r)). (7)

In this case, instead of the system of partial differen-
tial equations (6), we obtain a system of linear alge-
braic equations,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(︀
𝜔 − (k · v0𝑒)

)︀
𝑛𝑒 − (k · v𝑒)𝑛0𝑒 = 0,(︀

𝜔 − (k · v0ℎ)
)︀
𝑛ℎ − (k · vℎ)𝑛0ℎ = 0,

𝑖
(︁
𝜔 − (k · v0𝑒)

)︁
(k · v𝑒) = − 𝑞

𝑚*
𝑒

(︀
k ·E

)︀
,

𝑖
(︁
𝜔 − (k · v0ℎ)

)︁
(k · vℎ) =

𝑞

𝑚*
ℎ

(︀
k ·E

)︀
,

𝑖𝜀0
(︀
k ·E

)︀
= 4𝜋𝑞

(︀
𝑛𝑒 − 𝑛ℎ

)︀
.

(8)

Whence we find explicit expressions for the following
dynamic variables of the problem:⎧⎪⎪⎪⎨⎪⎪⎪⎩
𝑛𝑒 =

𝑖𝑞𝑛0𝑒

(︀
k ·E

)︀
𝑚*

𝑒(𝜔 − (k · v0𝑒))2
𝑒𝑖(𝜔𝑡−(k·r)),

𝑛ℎ = −
𝑖𝑞𝑛0ℎ

(︀
k ·E

)︀
𝑚*

ℎ(𝜔 − (k · v0ℎ))2
𝑒𝑖(𝜔𝑡−(k·r)).

(9)

Substituting them into the electrostatic Maxwell
equation in Eqs. (8) reduces the latter to the expres-
sion(︂
1− 𝜔𝑝𝑒

2

(𝜔 − (k · v0𝑒))2
−

−
𝜔2
𝑝ℎ

(𝜔 − (k · v0ℎ))2

)︂(︀
k ·E

)︀
= 0, (10)

where

𝜔2
𝑝(𝑒,ℎ) = 4𝜋

𝑛0(𝑒,ℎ)𝑞
2

𝜀0𝑚*
𝑒,ℎ

are the squared plasmon frequencies of electrons and
holes.

In order to clarify the physical meaning of this ex-
pression, let us write down the Maxwell wave equa-
tion for the electric field vector

E = E1𝑒
𝑖(𝜔𝑡−(k·r)). (11)

In this case, the wave equation takes the form

k2E− k
(︀
k ·E

)︀
− 𝜔2

𝑐2
𝜀
(︀
𝜔,k

)︀
E = 0. (12)

By calculating the scalar and vector products of this
equation with the vector k, it can be decomposed
into two independent equations for the longitudinal
and transverse electric fields,

𝜀
(︀
𝜔,k

)︀(︀
k ·E

)︀
= 0,(︁

k2 − 𝜔2

𝑐2
𝜀
(︀
𝜔,k

)︀)︁[︀
k×E

]︀
= 0.

(13)

Next, by comparing the equation for the longitudi-
nal electric field in Eq. (13) with expression (10), we
find an explicit expression for the dielectric constant
of a semiconductor where a constant electric current
flows,

𝜀
(︀
𝜔,k

)︀
=

(︂
1− 𝜔𝑝𝑒

2

(𝜔 − (k · v0𝑒))2
−

− 𝜔𝑝ℎ
2

(𝜔 − (k · v0ℎ))2

)︂
. (14)

Note that expression (14) found for the dielectric
permittivity is to some extent similar to the expres-
sion previously obtained in the theory of two-beam
instability (see, for example, work [16]), which arises
in the case where an electron beam passes through a
stationary “cold” plasma.

3. Bulk and Surface Plasmons
in a Semiconductor through Which
a Direct Electric Current Flows

In solid-state plasmonics, plasmons are “genetically”
related to longitudinal fluctuations of the electric
charge concentration [1]. Therefore, in this case, the
electric field of bulk plasmons will be determined by
the electrostatic Maxwell equation in Eqs. (13). The
condition 𝜀

(︀
𝜔,k

)︀
= 0 for a nontrivial solution of this

equation is the dispersion equation for bulk plasmons
in the following form:

1− 𝜔𝑝𝑒
2(︀

𝜔 − (k · v0𝑒)
)︀2 − 𝜔ph

2(︀
𝜔 − (k · v0ℎ)

)︀2 = 0. (15)

Equation (15) can be easily transformed into the
fourth-order polynomial equation(︀
𝜔 − (k · v0𝑒)

)︀2(︀
𝜔 − (k · v0ℎ)

)︀2 −
−𝜔𝑝𝑒

2
(︀
𝜔 − (k · v0ℎ)

)︀2 −
−𝜔2

𝑝ℎ

(︀
𝜔 − (k · v0𝑒)

)︀2
= 0, (16)

which has four solutions in the general case.
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For numerically analyzing the solutions of Eq. (16),
let us rewrite it in terms of dimensionless variables,

𝜔̄2
1𝜔̄

2
2 −

(︁
𝜔̄2
2 + 𝑎2𝜔̄2

1

)︁
= 0, (17)

where

𝜔̄1 = 𝜔̄ − 𝜔̄𝜅, 𝜔̄2 = 𝜔̄ + 𝑏𝜔̄𝜅,

𝜔̄ =
𝜔

𝜔𝑝𝑒
, 𝑎 =

𝜔𝑝ℎ

𝜔𝑝𝑒
, 𝑏 =

|v0ℎ|
|v0𝑒|

,

𝜔̄𝜅 = (u0 · 𝜅), u0 =
v0𝑒

𝑐
, 𝜅 =

𝑐k

𝜔𝑝𝑒
,

v0𝑒 = 𝜇0𝑒E0, v0ℎ = −𝜇0ℎE0.

In the case E0 = 0, dispersion equation (17) simpli-
fies to

𝜔̄2
[︀
𝜔̄2 − (1 + 𝑎2)

]︀
= 0, (18)

and its nontrivial solutions look like

𝜔̄1,2 = ±
√︀

1 + 𝑎2. (19)

The general numerical solutions of Eq. (17) are plot-
ted in Figs. 1 and 2.

It is obvious that the dispersion branches 𝜔1,2 in
Figs. 1 and 2 agree with solutions (19) of Eq. (18). At
the same time, the dispersion branches 𝜔3,4 corre-
spond to the complex conjugate solutions of Eq. (17),
which testifies to the instability of the corresponding
additional AHQPs in the semiconductor. Moreover,
the amplitude will increase for the oscillations of
the dynamic variables of the DGKNs with the cyclic
frequency 𝜔3 and decrease for those with the fre-
quency 𝜔4. The increments and decrements of the
DGKNs 𝛾3,4 will be determined by the expressions
𝛾3,4 = Im(𝜔3,4).

This interpretation of the obtained solutions of
Eq. (17) seems reasonable. The dispersion branches
𝜔1,2 correspond to plasmons that are “genetically”
related to electrons and holes, respectively. As for
the dispersion branches 𝜔3,4, they correspond to the
AHQPs that are genetically related to both electrons
and holes.

A comparative analysis of the dispersion branches
of the AHQPs in germanium and indium antimonide
shows that, as the difference between the plasmon
frequencies 𝜔𝑝(𝑒,ℎ) of electrons and holes increases,
the hybridization effect of concentration fluctuations

Fig. 1. Dispersion branches of bulk plasmons in Ge calculated
for the dimensionless variables 𝜔̄, 𝑎 = 0.866, 𝑏 = 0.487, 𝑢0 =

= 1.3× 10−3

Fig. 2. Dispersion branches of bulk plasmons in InSb cal-
culated for the dimensionless variables 𝜔̄, 𝑎 = 0.089, 𝑏 =

= 0.769× 10−3, 𝑢0 = 1.3× 10−4

of opposite electric charges decreases. As a result, the
values of the cyclic frequencies 𝜔3,4 become closer.

Let us pay attention to the fact that the increments
and decrements of the AHQP 𝛾3,4 differ from zero in a
confined interval of wave numbers 𝜅. Let us also note
that the short-wave limit for the values of 𝛾3,4 corre-
sponds to extremely large values of the wave vector
k, which may be unattainable in experimental studies
of the physical properties of the AHQPs.

From a practical point of view, the greatest interest
is attracted by the AHQPs with the cyclic frequency
𝜔3. In the long-wave spectral part, the amplitudes of
their dynamic variables are growing.

As for surface plasmons, hereafter, when finding
their dispersion law, we assume that the vector of
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Fig. 3. Dispersion branches of surface plasmons in Ge calcu-
lated for the dimensionless variables 𝜔̄, 𝑎 = 0.866, 𝑏 = 0.487,
𝑢0 = 1.3× 10−3

Fig. 4. Dispersion branches of surface plasmons in InSb cal-
culated for the dimensionless variables 𝜔̄, 𝑎 = 0.089, 𝑏 =

= 0.769× 10−3, 𝑢0 = 1.3× 10−4

the electric current density is parallel to the air-
semiconductor interface 𝑧 = 0 and introduce into con-
sideration the electric field induction D in a vicinity
of this interface in the following form:

D =

{︃
𝜖k𝛼𝐴𝛼𝑒

𝑖(𝜔𝑡−k𝛼r), 𝑧 > 0,

𝜀(𝜔,k)k𝛽𝐴𝛽𝑒
𝑖(𝜔𝑡−k𝛽r), 𝑧 6 0,

k𝛼 = (k,−𝑖𝛼), k𝛽 = (k, 𝑖𝛽), k = (𝑘𝑥, 𝑘𝑦),

(20)

where the interval 𝑧 > 0 is filled with air, and the in-
terval 𝑧 6 0 with a semiconductor. The parameter 𝜖
has the meaning of the air dielectric constant. As for
the parameters 𝛼 and 𝛽, they are assumed hereafter
to be responsible for the region of plasmon localiza-
tion near the interface 𝑧 = 0 between two media.

The vector D satisfies the electrostatic Maxwell
equation

(∇ ·D) = 0. (21)

Whence we find the plasmon localization parameters
𝛼 and 𝛽 in a vicinity of the interface between two
media: 𝛼 = |k| and 𝛽 = |k|. From the continuity
conditions for the tangential components of the elec-
tric field and the normal components of the electric
field induction across the interface 𝑧 = 0 between
two media, we find the dispersion equation for sur-
face plasmons,

𝜖+ 𝜀(𝜔,k) = 0, 𝜖 = 1. (22)

Obviously, the construction of dispersion equation
(22) is the same as in the case of dispersion equa-
tion for bulk plasmons, namely, 𝜀(𝜔,k) = 0. The-
refore, the solutions of Eq. (22) are similar to those
of Eq. (15).

The general solutions of Eq. (22) reduced to dimen-
sionless variables are plotted in Figs. 3 and 4. From
a comparison of the plots in Figs. 3 and 4, on the
one hand, and Figs. 1 and 2, on the other hand, we
may conclude that the dynamic properties of surface
plasmons localized in a vicinity of the interface 𝑧 = 0
between two media are similar to those of bulk plas-
mons in a semiconductor.

Note that the amplitudes of the dynamic variables
of surface plasmons with the cyclic frequency 𝜔3 grow
exponentially as the plasmons propagate along the
interface between two media.

Expression (14) for the dielectric permittivity can
be used to analyze plasmon states in metals. For this
purpose, it is necessary to zero the plasmon frequency
of holes, 𝜔ph = 0. As a result, we obtain the fol-
lowing expression for the dielectric permittivity of a
metal sample through which a constant electric cur-
rent flows:

𝜀(𝜔,k) = 1− 𝜔𝑝𝑒
2(︀

𝜔 − (k · v0𝑒)
)︀2 . (23)

In this case, the solutions of the dispersion equation
𝜀(𝜔,k) = 0 for bulk metalloplasmons look like

𝜔1,2 = ±𝜔𝑝𝑒 + (k · v0𝑒). (24)

As for surface metalloplasmons, the solutions of
their dispersion equation 1+ 𝜀(𝜔,k) = 0 take, in this
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case, the following form:

𝜔1,2 = ±𝜔𝑝𝑒√
2
+ (k · v0𝑒). (25)

From Eqs. (23) and (25), we obtain that a direct
electric current flow through a metal sample provides
both bulk and surface metalloplasmons with spatial
dispersion.

4. Bulk and Surface Plasmon-Polaritons in a
Semiconductor through which a Direct
Electric Current Flows

The dispersion equation for plasmon-polaritons, with
regard for the expression for the dielectric permittiv-
ity (14), has the following form

k2 =
𝜔2

𝑐2

(︂
1− 𝜔𝑝𝑒

2

(𝜔 − (k · v0𝑒))2
−

− 𝜔𝑝ℎ
2

(𝜔 − (k · v0ℎ))2

)︂
. (26)

This equation, after its reduction to dimensionless
variables, can be easily transformed to the sixth-order
polynomial equation

(𝜅2 − 𝜔̄2)𝜔̄2
1𝜔̄

2
2 + 𝜔̄2

(︁
𝜔̄2
2 + 𝑎2𝜔̄2

1

)︁
= 0 (27)

for the frequency 𝜔̄, where

𝜔̄1 = 𝜔̄ − (𝜅 · u0), 𝜔̄2 = 𝜔̄ + 𝑏(𝜅 · u0).

This equation has six solutions, but no analytic
one. Therefore, when numerically determining solu-
tions of Eq. (27), we confine the calculations to the
practically significant long-wave interval of the wave
number 𝜅.

In the absence of a constant electric current,
Eq. (27) acquires a simple form

𝜅2 − 𝜔̄2 + (1 + 𝑎2), (28)

which has the following solutions:

𝜔̄1,2 = ±
√︀

(1 + 𝑎2) + 𝜅2. (29)

The general numerical solutions of Eq. (27) for Ge are
plotted in Figs. 5 and 6.

Let us attract attention to the fact that the spec-
tral intervals corresponding to the AHQP frequen-
cies 𝜔3,4 and 𝜔5,6 are three orders of magnitude lower

Fig. 5. Dispersion branches of main bulk plasmon-polaritons
in Ge calculated for the dimensionless variables 𝜔̄, 𝑎 = 0.866,
𝑏 = 0.487, 𝑢0 = 1.3× 10−3

Fig. 6. Dispersion branches of additional bulk plasmon-
polaritons in Ge calculated for the dimensionless variables 𝜔̄,
𝑎 = 0.866, 𝑏 = 0.487, 𝑢0 = 1.3× 10−3

than the spectral interval corresponding to the main
bulk plasmon frequencies 𝜔1,2. It is obvious that the
plasmon-polaritons with the frequencies 𝜔1,2 agree
with solutions (29) of Eq. (28).

In the case of InSb, the situation is more compli-
cated. The corresponding general numerical solutions
of Eq. (27) are plotted in Figs. 7, 8, and 9. From
these figures, we find that the spectral intervals of
the bulk-plasmon frequencies 𝜔1,2, 𝜔3,4, and 𝜔5,6 are
significantly spaced apart. For instance, the spectral
interval of 𝜔3,4 has frequencies three orders of mag-
nitude lower than the frequencies of the spectral in-
terval with 𝜔1,2, and the frequencies of the spectral
interval with 𝜔5,6 are four orders of magnitude lower
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Fig. 7. Dispersion branches of main bulk plasmon-polaritons
in InSb calculated for the dimensionless variables 𝜔̄, 𝑎 = 0.089,
𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

Fig. 8. Dispersion branches of additional bulk plasmon-
polaritons in InSb calculated for the dimensionless variables
𝜔̄, 𝑎 = 0.089, 𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

than those of the spectral interval with 𝜔3,4. It is obvi-
ous that plasmon-polaritons with the frequency 𝜔1,2

agree with solutions (29) of Eq. (28).
To summarize, we can point out that the num-

ber of unstable types of polariton AHQPs in semi-
conductors increases twice as much as the number
of unstable types of plasmon AHQPs excited by a di-
rect electric current. It is obvious that, in the cases of
both plasmon and polariton AHQPs, these are polari-
ton AHQPs with increasing amplitudes of dynamic
variables that are of practical importance; the corre-
sponding increments of growth equal 𝛾3,5 = Im(𝜔3,5).

Now, let us consider surface plasmon-polaritons
in a vicinity of a flat air-semiconductor interface at

Fig. 9. Dispersion branches of additional bulk plasmon-
polaritons in InSb calculated for the dimensionless variables
𝜔̄, 𝑎 = 0.089, 𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

𝑧 = 0. For the intensities of the electric, E, and mag-
netic, H, fields of plasmon-polaritons, we choose the
following ansatzes:

E =

{︃
A𝛼𝑒

𝑖(𝜔𝑡−k𝛼r), 𝑧 ≥ 0,

A𝛽𝑒
𝑖(𝜔𝑡−k𝛽r), 𝑧 ≤ 0,

H =

⎧⎪⎪⎨⎪⎪⎩
−1

𝑞

[︀
k𝛼 ×A𝛼

]︀
𝑒𝑖(𝜔𝑡−k𝛼r), 𝑧 ≥ 0,

−1

𝑞

[︀
k𝛽 ×A𝛽

]︀
𝑒𝑖(𝜔𝑡−k𝛽r), 𝑧 ≤ 0,

(30)

where
(k𝛼 ·A𝛼) = 0, (k𝛽 ·A𝛽) = 0, (E ·H) = 0,

k𝛼 = (k,−𝑖𝛼), k𝛽 = (k, 𝑖𝛽), 𝑞 =
𝜔

𝑐
,

𝛼2 = k2 − 𝑞2𝜖, 𝛽2 = k2 − 𝑞2𝜀(𝜔,k), 𝜖 = 1,

(31)

which are consistent with the Maxwell wave equa-
tion. As in the previous section, the parameters 𝛼
and 𝛽 determine the localization region of plasmon-
polaritons in a vicinity of the interface 𝑧 = 0 between
the two media.

From the continuity conditions for the tangential
components of the electric and magnetic field vectors
of plasmon-polaritons [17, 18]

E = (𝐸𝑥, 𝐸𝑦, 𝐸𝑧), H = (𝐻𝑥, 𝐻𝑦, 0). (32)

across the interface 𝑧 = 0 between two media, we
find the following condition for a nontrivial relation
between the vectors A𝛼 and A𝛽 :(︁𝛼
𝜖

)︁2
−

(︁𝛽
𝜀

)︁2
= 0. (33)
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Fig. 10. Dispersion branches and localization parameters of
main surface plasmon-polaritons in Ge calculated for the di-
mensionless variables 𝜔̄, 𝑎 = 0.866, 𝑏 = 0.487, 𝑢0 = 1.3× 10−3

Fig. 11. Dispersion branches and localization parameters of
main surface plasmon-polaritons in InSb calculated for the
dimensionless variables 𝜔̄, 𝑎 = 0.089, 𝑏 = 0.769 × 10−3,
𝑢0 = 1.3× 10−4

Algebraic transformations of expression (33) bring it
to the following form:

k2 = 𝑞2
𝜖 · 𝜀(𝜔,k)
𝜖+ 𝜀(𝜔,k)

. (34)

Expression (34) has the meaning of the dispersion
equation for surface plasmon-polaritons in a semi-
conductor through which a direct electric current
flows. It is essential that surface plasmon-polaritons
in this problem possess the spatial dispersion.

The localization parameters 𝛼 and 𝛽 of plasmon-
polaritons in a vicinity of the interface 𝑧 = 0 between
two media can be reduced to the following forms with

Fig. 12. Dispersion branches of additional hybrid surface
plasmon-polaritons in Ge calculated for the dimensionless vari-
ables 𝑎 = 0.866, 𝑏 = 0.487, 𝑢0 = 1.3× 10−3

Fig. 13. Localization parameters of additional hybrid sur-
face plasmon-polaritons in Ge calculated for the dimensionless
variables 𝜔̄, 𝑎 = 0.866, 𝑏 = 0.487, 𝑢0 = 1.3× 10−3

the help of Eq. (34):

𝛼2 = −𝑞2
𝜖2

𝜖+ 𝜀(𝜔,k)
, 𝛽2 = −𝑞2

𝜀(𝜔,k)2

𝜖+ 𝜀(𝜔,k)
. (35)

After the substitution of dimensionless variables, this
equation can be easily transformed into the sixth-
order polynomial equation for the frequency 𝜔̄,

(𝜅̄2𝜖+ 𝛼̄2)𝜔̄2
1𝜔̄

2
2 − 𝛼̄2(𝜔̄2

2 + 𝑎2𝜔̄2
1) = 0, (36)

where

𝛼̄2 = 𝜅̄2 − 𝜔̄2𝜖,

𝜔̄1 = 𝜔̄ − (𝜅 · u0), 𝜔̄2 = 𝜔̄ + 𝑏(𝜅 · u0),

which has six solutions. There are no analytic solu-
tions to Eq. (35). Therefore, as was done above, when

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 8 539



N.M. Chepilko, Yu.V. Bobkov, S.A. Ponomarenko

Fig. 14. Dispersion branches of additional hybrid surface
plasmon-polaritons in InSb calculated for the dimensionless
variables 𝜔̄, 𝑎 = 0.089, 𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

Fig. 15. Localization parameters of additional hybrid sur-
face plasmon-polaritons in InSb calculated for the dimension-
less variables 𝜔̄, 𝑎 = 0.089, 𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

numerically calculating solutions of Eq. (35), with Ge
and InSb semiconductors taken as examples, we con-
fine the consideration to a practically significant long-
wave interval of wave numbers 𝜅. In Figs. 10 and 11,
the dispersion branches 𝜔1,2 = 𝜔1,2(𝜅) of the main
surface plasmon-polaritons and the dependences of
their localization parameters 𝛼1,2 = 𝛼1,2(𝜅) and
𝛽1,2 = 𝛽1,2(𝜅) on the wave number 𝜅 are depicted. At
u0(𝑒,ℎ) = 0, these plasmon-polaritons are reduced to
the known surface plasmon-polaritons [1, 17, 18].

Another matter is additional surface plasmon-
polaritons. The dispersion laws 𝜔3,4 = 𝜔3,4(𝜅) and
the dependences of localization parameters 𝛼3,4 =
= 𝛼3,4(𝜅) and 𝛽3,4 = 𝛽3,4(𝜅) on the wave num-
ber 𝜅 for them are shown in Figs. 12 to 15. These

Fig. 16. Dispersion branches of “exotic” plasmon-polaritons
in Ge calculated for the dimensionless variables 𝜔̄, 𝑎 = 0.866,
𝑏 = 0.487, 𝑢0 = 1.3× 10−3

Fig. 17. Dispersion branches of “exotic” plasmon-polaritons
in InSb calculated for the dimensionless variables 𝜔̄, 𝑎 = 0.089,
𝑏 = 0.769× 10−3, 𝑢0 = 1.3× 10−4

surface plasmon-polaritons are unstable. In particu-
lar, the amplitudes of dynamic variables of surface
plasmon-polaritons with 𝜔3 = 𝜔3(𝜅) grow exponen-
tially with the increment of growth 𝛾3 = Im(𝜔3), and
those with 𝜔4 = 𝜔4(𝜅) decrease exponentially with
the decrement 𝛾4 = Im(𝜔4); see Figs. 12 and 14.
Note that the localization parameters 𝛼3,4 = 𝛼3,4(𝜅)
and 𝛽3,4 = 𝛽3,4(𝜅), are, generally speaking, com-
plex quantities. However, their imaginary parts are
many orders of magnitude smaller than the real
ones. In particular, |Im(𝛼3,4)| ∼ Re(𝛼3,4)× 10−7 and
Im(𝛽3,4)| ∼ Re(𝛽3,4)×10−13 for Ge, and |Im(𝛼3,4)| ∼
∼ Re(𝛼)3,4×10−11 and |Im(𝛽3,4)| ∼ Re(𝛽3,4)×10−19

for InSb. The imaginary parts of the localization pa-
rameters lead to oscillations of the dynamic param-
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eters of surface plasmon-polaritons along the 𝑍-axis,
as they move away from the interface 𝑧 = 0 between
the two media.

Surface plasmon polaritons are “genetically” related
to surface plasmons. But the dispersion equation for
surface plasmons (22) has four solutions, whereas the
dispersion equation for surface plasmon-polaritons
(34) has six solutions. This fact points to the ex-
istence, in this case, of “exotic” plasmon-polariton
states in the semiconductors, which correspond to the
fifth and sixth solutions of dispersion equation (35).

It is essential that the parameters 𝛼5,6 and 𝛽5,6 of
these plasmon-polaritons are purely imaginary, i.e.,
Re(𝛼5,6) = 0 and Re(𝛽5,6) = 0. The signs of the
parameters 𝛼5,6 and 𝛽5,6 are such that they define
bulk plasmon-polaritons that propagate from the in-
terface into the depth of contacting media. The dis-
persion branches 𝜔5,6 = 𝜔5,6(𝜅) and the parameters
𝛼5,6 and 𝛽5,6 of “exotic” plasmon-polaritons are shown
in Figs. 16 and 17.

5. Summary

By analyzing the influence of direct electric current
on the dynamics of plasmons and plasmon-polaritons
(quasiparticles) in semiconductors, it has been found
that the counter motion of macroscopic continua of
electrons and holes induced by an external electro-
motive force gives rise to the appearance, in addition
to the main bulk and surface quasiparticles, of unsta-
ble bulk and surface AHQPs, which are “genetically”
related to both electrons and holes and emerge in
pairs. The dynamic variables of one of those AHQPs
grow exponentially in time, and the dynamic vari-
ables of the other AHQP decrease exponentially. The
phenomenon of AHQP instability takes place within
a limited interval of quasiparticle wavenumber values.

The effect of quasiparticle hybridization in a semi-
conductor is substantially affected by the difference
between the plasmon frequencies of electrons and
holes. As this difference increases, the degree of quasi-
particle hybridization decreases.

It is shown that one of six solutions of the disper-
sion equation for surface AHQPs corresponds to “ex-
otic” bulk plasmon-polaritons, which propagate from
the air-semiconductor interface into the depth of the
contacting media.

By analyzing the solutions of the dispersion equa-
tions (Figs. 1 to 17), it iss found that the AHQP
frequencies in semiconductors such as Ge and InSb

belong to the terahertz frequency range 𝜔 = (1011÷
1.5× 1013) Hz.

Attention should be paid to the fact that unstable
plasmons and plasmon-polaritons have certain distri-
bution diagrams, which affect their amplitude and
frequency characteristics. The latter, in turn, are de-
termined by such factors as the product (k · v0(𝑒,ℎ))
in formula (14) for the dielectric permittivity of a
semiconductor through which a direct electric cur-
rent flows.

The appearance of unstable AHQPs in a semicon-
ductor through which a direct electric current flows
can be used as a basis for a simple excitation method
of both bulk and surface AHQPs in the terahertz fre-
quency interval.

1. N.B. Brandt, V.A. Kulbachinskii. Quasiparticles in Con-
densed Matter Physics (Fizmatlit, 2007) (in Russian)
[ISBN: 5-9221-0564-7].

2. S.A. Maier. Plasmonics: Fundamentals and Applications
(Springer Science + Bussiness Media LLC, 2007) [ISBN:
0-387-33150-6].

3. S. Enoch, N. Bonod. Plasmonics: From Basics to Advan-
ced Topics (Springer, 2012) [ISBN-10: 3642280781; ISBN-
13: 978-3642280788].

4. M.M. Chepilko, S.O. Ponomarenko. The generalized
Drude-Lorentz model and its application in metalloplas-
monics. Ukr. J. Phys. 67, 431 (2022).

5. M.M. Chepilko, S.O. Ponomarenko. Problematic issues of
metal plasmonics of bulk polaritons in the magnetostatic
field. Ukr. J. Phys. 67, 455 (2022).

6. Yu.E. Lozovik. Plasmonics and magnetoplasmonics on
graphene and topological insulator. Usp. Fiz. Nauk 182,
1111 (2012) (in Russian).

7. M. Dyakonov, M. Shur. Shallow water analogy for a ballis-
tic field effect transistor: New mechanism of plasma wave
generation by dc current. Phys. Rev. Lett. 71, 2465 (1993).

8. S.M. Kukhtaruk. High-frequency properties of systems
with drifting electrons and polar optical phonons. Semi-
cond. Phys. Quant. Electron. Optoelectron. 11, 43 (2008).

9. O. Sydoruk, V. Kalinin, L. Solymar. Terahertz instability
of optical phonons interacting with plasmons in two-di-
mensional electron channels. Appl. Phys. Lett. 97, 062107
(2010).

10. V.A. Kochelap, S.M. Kukhtaruk. THz electrical instability
of a hybrid system composed of quantum dot and quantum
well with drifting electrons. J. Appl. Phys. 109, 114318
(2011).

11. S.O. Yakushev, S.I. Petrov, A.V. Shulika, I.A. Sukhoi-
vanov. Generation of terahertz radiation by femtosecond
lasers of the optical range. Radiotehnila 167, 102 (2011)
(in Russian).

12. S. Boubanga-Tombet et al. Room-temperature amplifica-
tion of terahertz radiation by grating-gate graphene struc-
tures. Phys. Rev. X 10, 031004 (2020).

ISSN 2071-0194. Ukr. J. Phys. 2025. Vol. 70, No. 8 541



N.M. Chepilko, Yu.V. Bobkov, S.A. Ponomarenko

13. V.V. Gerasimov, A.K. Nikitin, A.G. Lemzyakov, I.A. Aza-
rov. Evaluation of the efficiency of generation of terahertz
surface plasmon polaritons by the end-fire coupling tech-
nique. Photonics 10, 917 (2023).

14. New Semiconductor Materials. Characteristics and Prop-
erties; http://www.ioffe.ru/SVA/NSM/Semicond/InSb/
index.html.

15. A.F. Alexandrov, L.S. Bogdankevich, A.A. Rukhadze. Fun-
damentals of Plasma Electrodynamics (Vysshaya shkola,
1978) (in Russian).

16. E.M. Lifshitz, L.P. Pitaevsky. Physical Kinetics (Perga-
mon Press, 1979).

17. A.I. Maimistov. Electrodynamics of Continuous Media
(MFTI, 2015) (in Russian).

18. L.D. Landau, E.M. Lifshits. Electrodynamics of Continu-
ous Media (Pergamon Press, 1984). Received 28.05.23.

Translated from Ukrainian by O.I. Voitenko

М.М.Чепiлко, Ю.В.Бобков, С.О.Пономаренко

ПРО МЕХАНIЗМ ЗБУДЖЕННЯ ГIБРИДНИХ
ПЛАЗМОН-ПОЛЯРИТОНIВ У НАПIВПРОВIДНИКАХ

Проаналiзовано вплив постiйного електричного струму на
динамiку плазмон-поляритонiв у напiвпровiдниках. Пока-

зано, що зустрiчний рух макроскопiчних континiумiв еле-
ктронiв i дiрок, зумовлений зовнiшньою електрорушiй-
ною силою, приводить до появи нестiйких додаткових гi-
бридних об’ємних та поверхневих плазмонiв та плазмон-
поляритонiв, якi “генетично” зв’язанi як з електронами, так
i з дiрками. Закон дисперсiї та iнкремент (декремент) зро-
стання (спадання) амплiтуд динамiчних змiнних додатко-
вих гiбридних плазмонiв та плазмон-поляритонiв суттєво
залежать вiд стацiонарної швидкостi руху заряджених ча-
стинок, зумовленої постiйним електричним струмом. Пока-
зано, що одному iз розв’язкiв дисперсiйного рiвняння по-
верхневих плазмон-поляритонiв вiдповiдають “екзотичнi”
об’ємнi плазмон-поляритони, якi розповсюджуються вiд ме-
жi розподiлу “повiтря–напiвпровiдник” в глибину контакту-
ючих середовищ. Нестiйкiсть додаткових гiбридних пла-
змонiв та плазмон-поляритонiв можна покласти в основу
простого методу збудження додаткових гiбридних плазмо-
нiв та плазмон-поляритонiв у напiвпровiдниках.

Ключ о в i с л о в а: електрони, дiрки, електричне поле, по-
ляризацiя, густина електричного струму, плазмонна ча-
стота, просторова дисперсiя, дисперсiйне рiвняння, нестiй-
кiсть, об’ємнi плазмони, поверхневi плазмони, об’ємнi по-
ляритони, поверхневi поляритони, iнкремент зростання, де-
кремент спадання.
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