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MULTIPLE JOINT WEAK MEASUREMENTS
AS A WAY TO SUPPRESS THE DECOHERENCE

We apply the multiple, equally spaced in time, weak measurements, to the two-qubit entangled
system to decrease the rate of its decoherence, i.e., to prevent the decrease of the off-diagonal
elements. The scheme is similar to the Quantum Zeno Effect, but differs by the frequency of
the measurements. While the conventional Quantum Zeno Effect assumes rapid measurements
which mitigates the Hamiltonian dynamics, the proposed method makes use of entanglement
between the qubits to decrease the decoherence rate. We will show that it allows us to partially
suppress the decoherence in the case of Lindblad evolution.
K e yw o r d s: joint weak measurements, decoherence suppression, Quantum Zeno Effect, Lind-
blad evolution.

1. Introduction

Although quantum computing technologies and quan-
tum error correction methods have advanced rapidly,
decoherence remains a persistent challenge [1–5]. Un-
wanted interactions between qubits and external de-
grees of freedom, such as the electromagnetic modes
of experimental setups, induce joint dynamics that
transform pure quantum states into mixed states.
This non-Hamiltonian behavior can be modeled by
quantum kinetic equations [6–8] or through the ac-
tion of Kraus operators [7, 9].

A variety of strategies have been developed to
counteract these deleterious effects. For instance,
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Quantum Error Correcting Codes [10] protect in-
formation by encoding a single logical qubit into
an entangled state of several physical qubits, al-
lowing the recovery procedures to be rectified er-
rors introduced by environmental interactions. Al-
ternative methods exploit inherent symmetries to
construct decoherence-free subspaces [11] or imple-
ment bang-bang (dynamical decoupling) pulses [12–
15] to combat noise. However, such pulse sequences
are typically limited to countering noise with char-
acteristic frequencies lower than the applied control
frequency.

A well-known non-Hamiltonian approach to pre-
vent the unwanted dynamics is provided by the con-
ventional Quantum Zeno Effect (QZE), where re-
peated strong (projective) measurements “freeze” the
evolution of the system, thereby mitigating both de-
coherence and dissipation [16]. However, the strong
back-action of projective measurements can limit flex-
ibility in controlling the system’s evolution. In con-
trast, the method presented here is built upon a series
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of weak, equally spaced joint measurements applied
to an entangled two-qubit system.

The key innovation in our approach is the use
of weak measurements, to decrease the loss of co-
herence during non-Hamiltonian Lindblad evolution.
This brings two principal advantages. First, they al-
low for a continuous, tunable interaction with the
system, enabling an adjustment of the measurement
“strength” or influence so that the disturbance can
be optimized relative to the system dynamics. Se-
cond, unlike the conventional QZE, which requires
rapid, strong measurements to halt the system evolu-
tion, our strategy operates at measurement frequen-
cies below the thermal bath’s characteristic frequen-
cies. This relaxed timing requirement is compensated
by tuning the measurement strength, so that the sys-
tem is gently steered toward the subspace correspond-
ing to the prescribed entangled states dictated by the
quantum algorithm.

Many conventional methods focus on protecting in-
dividual qubits or using the symmetry of noise to
form decoherence-free subspaces. However, in many
quantum algorithms the qubits are inherently en-
tangled in predetermined configurations. By using
prior knowledge of these allowed entangled states,
our method actively suppresses decoherence through
joint measurements that project the overall state
onto the desired entangled subspace. This flexible
control, implemented within the framework of Lind-
blad evolution, not only reduces decoherence but also
preserves the crucial entanglement between qubits
more effectively than conventional strong measure-
ment techniques.

The paper is organized as follows. In Section 2,
we review the principles of the conventional Quan-
tum Zeno Effect and detail our proposed method
for decoherence suppression via joint weak measure-
ments. Section 3 demonstrates the application of this
method to a two-qubit system and provides both nu-
merical results and analytic asymptotic relations to
analyze the effectiveness of preserving the entangle-
ment. Section 3.3 investigates how the method effi-
ciency depends on key system parameters, such as
measurement frequency, decoherence rate, and the
system initial state, with special emphasis on the
tunability afforded by the weak measurement ap-
proach. Finally, Section 4 summarizes the results and
discusses potential applications in quantum algorithm
design, where the exploitation of predetermined en-

tangled configurations offers a promising route to mit-
igate decoherence.

2. Method for Suppression of Decoherence

2.1. Freezing of unitary evolution

In contrast to the conventional Quantum Zeno Effect
(QZE) based on strong (projective) measurements,
our method continuously and gently guides the sys-
tem state toward a pre-selected subspace. This sub-
space is determined by the allowed entangled states
known from the quantum algorithm. Instead of an
regular collapse, weak measurements exert a back-
action that can be tuned to balance the interplay be-
tween the unitary dynamics and decoherence induced
by the environment.

Traditionally, the QZE is illustrated by starting
with an initial state |Ψ0⟩ that evolves under a time-
independent Hamiltonian ℋ. In the projective case,
after each interval Δ𝑡, the state is fully projected back
onto |Ψ0⟩ according to

𝜌𝑡 =

(︀
𝑃 𝑒−𝑖ℋΔ𝑡

)︀𝑁
𝑃 |Ψ0⟩⟨Ψ0|𝑃

(︀
𝑒𝑖ℋΔ𝑡 𝑃

)︀𝑁
𝑇𝑟

[︁(︀
𝑃 𝑒−𝑖ℋΔ𝑡

)︀𝑁
𝑃 |Ψ0⟩⟨Ψ0|𝑃

(︀
𝑒𝑖ℋΔ𝑡 𝑃

)︀𝑁]︁ ,
with the projector 𝑃 = |Ψ0⟩⟨Ψ0| and 𝑁 + 1 number
of projections. This result can be easily obtained by
subsequent applycation by Hamiltonian propagator
and projector 𝑃 to the initial state 𝜌0 = |Ψ0⟩⟨Ψ0|.
A short-time expansion of the evolution operator,
𝑒−𝑖ℋΔ𝑡 ≈ 1−𝑖ℋΔ𝑡− 1

2ℋ
2Δ𝑡2, shows that the survival

probability

𝑝(Δ𝑡) =
⃒⃒
⟨Ψ0|𝑒−𝑖ℋΔ𝑡|Ψ0⟩

⃒⃒2
, (1)

deviates from unity only quadratically in Δ𝑡. Thus,
in the limit of rapid projective measurements the
state appears “frozen” with respect to the unitary
dynamics.

However, when the system interacts with an en-
vironment, its evolution becomes non-Hamiltonian.
Such effects are commonly modeled by Lindblad
equation with Liouvillian ℒ:

𝜌̇ = ℒ𝜌 = −𝑖[ℋ, 𝜌] +
∑︁
𝑖

(︂
𝐿𝑖 𝜌𝐿

†
𝑖 −

1

2
{𝐿†

𝑖𝐿𝑖, 𝜌}
)︂
. (2)

As the initial state, we take the maximally entan-
gled state – the Bell state: 𝜌0 = |Ψ+⟩⟨Ψ+|, where
|Ψ+⟩ = 1√

2
(|00⟩+ ⟨11|).
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In this situation the additional dissipative terms
yield corrections of order Δ𝑡 (not merely quadratic),
and frequent projective measurements do not fully
suppress decoherence.

To address this, our approach replaces strong mea-
surements with joint weak measurements that can be
applied at frequencies below the thermal bath char-
acteristic rates, while still harnessing the structure of
the entangled state space.

2.2. Joint weak measurements
for partial decoherence suppression

Rather than projecting the state entirely onto a single
initial state, we now consider an evolving algorithm
where a subset 𝒮 of qubits is known to lie in a specific
entangled subspace with basis {|Ψ𝑖⟩}. In our scheme
the state preservation is achieved by means of a series
of joint weak measurements.

To illustrate this, one may define a set of weak mea-
surement operators {𝑀𝑖} associated with the basis
states |Ψ𝑖⟩. A typical model for a weak measurement
operator is

𝑀𝑖 =
√︀

1− 𝑞 𝐼 +
√
𝑞 |Ψ𝑖⟩⟨Ψ𝑖|, (3)

where 𝑞 (with 0 < 𝑞 ≪ 1) quantifies the measure-
ment strength. In the limit 𝑞 → 1 these operators ap-
proach full projective measurements, while for small
𝑞 they impart only a partial bias toward the desired
subspace.

Assuming the system state evolves under the Liou-
villian ℒ for a time interval Δ𝑡, the weak measure-
ment update is then expressed as

𝜌𝑡+Δ𝑡 =

∑︀
𝑖 𝑀𝑖 𝑒

ℒΔ𝑡 𝜌𝑡 𝑀
†
𝑖

Tr
(︁∑︀

𝑖 𝑀𝑖 𝑒ℒΔ𝑡 𝜌𝑡 𝑀
†
𝑖

)︁ .
Repeating this process 𝑁 = 𝑡/Δ𝑡 times, the cumu-
lative evolution filters out components that do not
belong to the allowed entangled subspace, thereby re-
ducing the effective decoherence rate.

This mechanism offers two key advantages. First is
a tunable back-action: the parameter 𝑞 provides con-
trol over the measurement-induced disturbance. Un-
like projective measurements, weak measurements al-
low one to balance the perturbation against the natu-
ral dynamics of the system. Second, exploiting known
entanglement: because the set {|Ψ𝑖⟩} encodes prior
information about valid entangled configurations in

the algorithm, the joint weak measurements selec-
tively suppress transitions into states outside this
subspace.

In summary, by integrating the non-Hamiltonian
dynamics via the Lindblad generator and interleav-
ing it with appropriately tuned joint weak measure-
ments, our method leverages both the slow mea-
surement cadence (relative to the noise frequencies)
and the known structure of entanglement among
the qubits. This results in a partial, yet effective,
suppression of decoherence. While the overall prob-
ability of preserving the desired state becomes less
than unity, and diminishes with increasing measure-
ment frequency, the flexibility of adjusting 𝑞 offers a
promising route to optimize decoherence control in
realistic quantum computing architectures.

3. Preserving the Entanglement
in a Two-Qubit System

3.1. Free and measurements-assisted
evolution of the system

In this section, we illustrate the weak measurement-
assisted protection of entangled states by consider-
ing a simple two-qubit system. As before, the qubits,
with frequencies 𝜔1 and 𝜔2, interact with an exter-
nal thermal bath that induces decoherence. However,
in contrast to the conventional quantum Zeno effect
based on projective measurements, we now employ
joint weak measurements to gradually steer the sys-
tem back toward the entangled subspace prescribed
by the quantum algorithm.

We begin by considering the uncontrolled evolu-
tion. The two qubits are assumed to be initially pre-
pared in a coherent superposition of two Bell states,

|Ψin⟩ =
√
𝑝+

√
1− 𝑝

√
2

|01⟩+
√
1− 𝑝−√

𝑝
√
2

|10⟩.

so that for 𝑝 = 0 or 𝑝 = 1 the state is maxi-
mally entangled. In many quantum algorithms the
proper encoding guides the system to evolve within
a known subspace even though the exact state is not
predetermined.

The system Hamiltonian is given by

𝜔± =
𝜔1 ± 𝜔2

2
, 𝑆𝑧 = 𝑠𝑧 ⊗ 𝐼 + 𝐼 ⊗ 𝑠𝑧,

Δ𝑆𝑧 = 𝑠𝑧 ⊗ 𝐼 − 𝐼 ⊗ 𝑠𝑧.

ℋ = 𝜔+ 𝑆𝑧 + 𝜔− Δ𝑆𝑧.
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with 𝑠𝑧 = 𝜎𝑧/2. Decoherence imposed by the thermal
bath is modeled within the Lindblad framework. For
simplicity, we use a set of Lindblad operators:

𝑠
(1)
± = 𝑠± ⊗ 𝐼, 𝑠

(2)
± = 𝐼 ⊗ 𝑠±,

𝑠(1)𝑧 = 𝑠𝑧 ⊗ 𝐼, 𝑠(2)𝑧 = 𝐼 ⊗ 𝑠𝑧.

𝐿2𝑖−1 =
√︀

𝛾𝑖 (𝑛+ 1) 𝑠
(𝑖)
− ,

𝐿2𝑖 =
√
𝛾𝑖 𝑛 𝑠

(𝑖)
+ ,

𝐿4+𝑗 =
√
𝛾𝑝 𝑗 𝑠

(𝑗)
𝑧 , 𝑖 = 1, 2, 𝑗 = 1, 2,

(4)

where 𝑠± = 𝑠𝑥 ± 𝑖 𝑠𝑦 and the Planck number 𝑛 (as-
sumed identical for both qubits) characterizes the
equilibrium temperature. Operators 𝐿1–𝐿4 describe
the linear energy-exchange interactions with the bath,
while 𝐿5 and 𝐿6 model dispersive effects.

In the free evolution, the off-diagonal element 𝜌23
of the density matrix (expressed in the computational
basis) evolves as

𝜌
(free)
23 ≃ −1

2

(︂
1− 𝐴 𝑡

2

)︂
,

𝐴 = (2𝑛+ 1)(𝛾1 + 𝛾2) + 𝛾𝑝1 + 𝛾𝑝2 + 2 𝑖 (𝜔1 − 𝜔2).

indicating that both the Hamiltonian dynamics and
the linear qubit-bath couplings contribute to deco-
herence and phase evolution. Figure 1 schematically
illustrates the two-qubit setup in contact with the
thermal bath.

To counteract decoherence without fully freezing
the dynamics, we now introduce a measurement pro-
tocol that changes the state toward the desired en-
tangled subspace. In contrast to projective measure-
ments, our approach uses a measurement superop-
erator ℳ that induces only partial collapse. In this
formulation the measurement update reads

ℳ[𝜌] = (1− 𝑞) 𝜌+ 𝑞
∑︁
𝑖=±

|Ψ𝑖⟩⟨Ψ𝑖| 𝜌 |Ψ𝑖⟩⟨Ψ𝑖|,

where the parameter 0 < 𝑞 ≪ 1 quantifies the mea-
surement strength and the projectors |Ψ±⟩⟨Ψ±| select
the allowed subspace. After evolving freely for a time
interval Δ𝑡 under the Liouvillian dynamics 𝑒ℒΔ𝑡, the
state is updated as 𝜌(𝑡 + Δ𝑡) = Λ−1 ℳ

[︀
𝑒ℒΔ𝑡 𝜌(𝑡)

]︀
where Λ = Tr

{︀
ℳ

[︀
𝑒ℒΔ𝑡 𝜌(𝑡)

]︀}︀
.

This formulation emphasizes that, at every up-
date, the system undergoes an unperturbed evolu-
tion and then a weak projection onto the entangled

Fig. 1. Schematic representation of a two-qubit system inter-
acting with an external thermal bath. The protocol alternates
between periods of Liouvillian evolution and successive joint
weak measurements. These measurements project the system
state onto the allowed subspace of entangled states (here, the
Bell states) in order to suppress decoherence

subspace. By iterating this process, the protocol con-
tinuously suppresses deviations from the target state
configuration while still allowing for a controlled in-
terplay with the system intrinsic dynamics.

Under the combined action of the bath and the
weak measurements, the contributions arising from
Hamiltonian evolution and the linear interactions
(proportional to 𝛾1 and 𝛾2) are suppressed. For ex-
ample, the off-diagonal element now evolves approxi-
mately as

𝜌
(meas)
23 ≃ −1

2

(︂
1− (𝛾𝑝1 + 𝛾𝑝2) 𝑡

2

)︂
.

for 𝑞 = 1, thereby eliminating the dephasing terms
due to energy exchange and unitary oscillations. In ef-
fect, the joint weak measurements filter out unwanted
evolution components while preserving only the dis-
persive decoherence effects that cannot be compen-
sated by the measurement protocol. This suppression
is achieved without requiring a high-frequency projec-
tive measurement sequence; the flexibility afforded by
tuning the measurement strength 𝑞 permits the proto-
col to be applied at intervals that remain compatible
with the intrinsic system dynamics.

Figure 2 compares the time evolution of selected
density matrix elements under free evolution and un-
der repeated joint weak measurements.

Figure 3 shows the evolution of matrix elements
for three different parameters: 𝑞 = 0 (first row, 𝑎),
𝑞 = 0.9 (second row, 𝑏), 𝑞 = 1 (third row, 𝑐), for
𝜔1𝑡 = 0, 10, 20, 30 (the four columns). The color rep-
resents the real part of the matrix elements, with all
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Fig. 2. (Color online) Comparison of the evolution of the
density matrix elements in the two-qubit system. The panel
shows the time evolution (scaled in units of 1/𝜔1) of both di-
agonal and off-diagonal elements under free evolution versus
under repeated joint weak measurements. The weak measure-
ment process suppresses contributions from Hamiltonian dy-
namics and linear qubit-bath couplings, thereby reducing de-
coherence. Parameters: 𝜔2 = 𝜔1, 𝛾1/𝜔1 = 𝛾2/𝜔1 = 0.05,
𝛾𝑝1/𝜔1 = 𝛾𝑝2/𝜔1 = = 0.005, with 𝑁 = 50 measurement up-
dates, and 𝑛 = 0

16 elements displayed in each panel. We see as the pa-
rameter 𝑞 increases, the effectiveness of the method
increases from first row to the third.

3.2. Characteristics
of the effectiveness of the method

To quantify the impact of various parameters on our
scheme performance, it is necessary to select measures
that reflect the system’s coherence. In many cases the
coherence is associated with the off-diagonal elements
of the density matrix. Among several candidates, in-
cluding the relative entropy of coherence [17], the
Jensen–Shannon divergence [18], and the 𝑙1 norm of
quantum coherence [19], we choose the latter. In the
computational basis the 𝑙1 norm is defined as

𝐶𝑙1 =
∑︁
𝑖 ̸=𝑗

|𝜌𝑖𝑗 |. (5)

In our simple example the contribution to 𝐶𝑙1 is dom-
inated by the only initially nonzero off-diagonal ele-
ment, 𝜌23.

Decoherence also manifests as a loss of entangle-
ment between qubits. This deterioration can be quan-

tified by several measures, such as the entropy of
entanglement [20], negativity [21], and concurrence
[22]. Here we employ concurrence, defined by

𝐶 = max
{︁
0,

√︀
𝜆1 −

√︀
𝜆2 −

√︀
𝜆3 −

√︀
𝜆4

}︁
, (6)

where the 𝜆𝑖 (ordered in decreasing order) are the
eigenvalues of the matrix 𝜌 𝜌 with

𝜌 = (𝜎𝑦 ⊗ 𝜎𝑦) 𝜌
* (𝜎𝑦 ⊗ 𝜎𝑦),

and 𝜌* denotes the complex conjugate of 𝜌.
Figure 4 shows the time evolution of the concur-

rence 𝐶 as given in Eq. (6). It is evident that the rate
at which entanglement is lost is substantially reduced,
when the weak measurement protocol is applied. In
fact, one can compare numerical results with the
asymptotic expressions, for small times 𝑡 ≪ 1/𝛾1,2,
under free decoherence the concurrence decays as

𝐶 ≃ 1−𝑡
[︁
(𝛾1+𝛾2)

(︀
𝑛+ 1

2+
√︀
𝑛(𝑛+ 1)

)︀
+ 1

2 (𝛾𝑝1+𝛾𝑝2)
]︁

(7)

whereas, with the measurement protocol with 𝑞 = 1,
the decay is given by

𝐶 ≃ 1− 𝑡

2

2∑︁
𝑖=1

𝛾𝑝𝑖. (8)

To assess the efficiency of our scheme, we intro-
duce three quantitative characteristics. The first one
is defined as

ℰtan =
𝑑𝐶meas

𝑑𝑡

(︂
𝑑𝐶free

𝑑𝑡

)︂−1 ⃒⃒⃒⃒
𝑡=0

, (9)

which represents the reduction in the instantaneous
rate of concurrence decay at 𝑡 = 0. After calculations
for an arbitrary initial superposition state Eq. (1),
one finds, for 𝑞 = 1,

ℰtan = 𝑅𝑚 (𝑅𝑓 +𝑅𝑠)
−1

, (10)

where

𝑅𝑚 = 𝛾𝑝1 + 𝛾𝑝2 + (𝛾1 − 𝛾2)
√︀

1− (2𝑝− 1)2,

𝑅𝑓 =
(︀
𝛾𝑝1 + (2𝑛+ 1) 𝛾1

)︀
+

(︀
𝛾𝑝2 + (2𝑛+ 1) 𝛾2

)︀
,

𝑅𝑠 =
2

1− 2𝑝

√︁
𝑛(𝑛+ 1)

[︀
(1− 2𝑝)2(𝛾1 − 𝛾2)2 + 4 𝛾1𝛾2

]︀
.
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Fig. 3. (Color online) Visual representations of the density matrix 𝜌 at different stages of evolution. Columns corresponds
to time moments (𝜔1𝑡 = 0, 10, 20, 30): the initial state with no measurement (a); the state after the application of the joint
weak measurements with force 0.9 (b); and the state at the same time with force 1 of the joint weak measurements that more
efficiently drives the state back onto the desired entangled subspace. Positive matrix elements are depicted in yellow, while
negative elements are shown in blue (c)

A second measure of the protocol’s efficiency con-
siders the time required for the concurrence to drop
to a fixed threshold value (we adopt 0.9 as the crite-
rion). This is given by

ℰtime = 𝑡
⃒⃒
𝐶=0.9, free

(︁
𝑡
⃒⃒
𝐶=0.9,meas

)︁−1

. (11)

Finally, in order to connect the preservation of entan-
glement with the maintenance of quantum coherence,
we compare the decay rates of the 𝑙1 norm coherence
measure:

ℰcoh =
𝑑𝐶𝑙1meas

𝑑𝑡
·
(︂
𝑑𝐶𝑙1free

𝑑𝑡

)︂−1 ⃒⃒⃒⃒
𝑡=0

. (12)

Figure 5 plots all three characteristics as functions
of the number of measurement steps executed on
a fixed time interval. The similar behavior observed
across these metrics confirms that the joint weak mea-
surement protocol effectively preserves both the co-
herence and the entanglement of the system. In par-
ticular, the small steps seen in the ℰcoh(𝑁) curve arise
from the nonmonotonic nature of 𝐶(𝑡) when intersect-
ing with the constant threshold 𝐶cr = 0.9. The solid
horizontal line in the main panel of Fig. 5 represents
the asymptotic value given by Eq. (10). Notably, for
moderate measurement frequencies (typically 𝑁 ∼ 50

Fig. 4. (Color online) Time evolution of concurrence for a
two-qubit entangled state under different scenarios. The lower
curve represents the decay due solely to decoherence, follow-
ing the analytic asymptotics Eq. (7). Overlaid on this, three
upper curves illustrate how repeated joint measurements can
preserve the entanglement; these curves correspond to differ-
ent weak measurement forces (0.1, 0.3, and 1), and the under-
measurement behavior is described by the analytic asymptotics
Eq. (8). All parameters are the same as in Fig. 2

in our example) the protocol achieves its optimal ef-
fect, and one can reasonably expect an even greater
enhancement in coherence preservation with an in-
creasing number of entangled qubits.
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3.3. Influence of key parameters
on the effectiveness of the method

In this subsection, we discuss the role of different pa-
rameters in the effectiveness of applying multiple joint
weak measurements to mitigate the loss of coherence
and entanglement.

The simulation consisted in solving the Lindblad
master equation with Liouvillian (2) which describes
the time evolution of the system density matrix 𝜌.
The parameters of the Lindblad dynamics, namely
the ratio of frequency detunings 𝜔2/𝜔1, the relaxation
rates 𝛾1 and 𝛾2, the dephasing rates 𝛾𝑝1,2, the Planck
number 𝑛 indicating the role of temperature were
freezed. The parameter of the weak measurements
strength force 𝑞 in Eq. (3) were varied systematical-
ly. The time evolution was integrated numerically us-
ing a second order Runge Kutta method with a fixed
time step of Δ𝑡 = 0.01/𝜔1. The total simulation time
was 𝑇total = 100/𝜔1. The time step was selected to
ensure the stability and accuracy of the integration.

To evaluate the impact of measurement on the dy-
namics of the qubits two simulation protocols were
employed. In the first protocol joint weak measure-

Fig. 5. (Color online) Dependence of three effectiveness char-
acteristics, ℰtan, ℰtime, and ℰcoh, defined by Eqs. (9), (11), and
(12), on the number of joint measurements performed during
the interval 𝑡 = 100/𝜔1. In addition to displaying analytic
asymptotic behavior for the case with weak measurement force
equal to 1, the plot features two curves corresponding to results
of numeric calculations of weak measurement with forces of 0.9
and 1. One can see that even relatively infrequent joint weak
measurements of the entangled qubit pair effectively suppress
the loss of concurrence (as shown in the main panel and the
first inset), as well as the degradation of the coherence measure
𝐶𝑙1 (presented in the second inset). Parameters are the same
as for Fig. 2

Fig. 6. (Color online) Dependence of the method effectiveness,
as defined in Eq. (9), on the number of measurements 𝑁 and
the force parameter 𝑞 of weak measurements. The color scale
indicates the effectiveness

ments on the subspace of Bell states |Ψ±⟩ were ap-
plied at regular intervals. In the second protocol no
measurements were performed. In the first case, the
measurement intervals were distributed evenly along
the simulation timeline.

A rectangular grid of time points was used for sam-
pling the elements of the density matrix and these
values were stored at prescribed intervals to reduce
computational overhead. After each integration step
the density matrix was regularized to ensure that its
trace remained normalized. For each simulation, the
matrix elements of 𝜌 were recorded and key metrics
such as the concurrence and coherence measures were
computed.

Figure 6 presents the results of the calculation of
the effectiveness parameter ℰtan for the different force
parameter 𝑞 and numbers 𝑁 of joint weak measure-
ments applied over the considered time interval.

The results indicate that the measurement fre-
quency need not be very high and the effect is ob-
served for 𝑁 ∼ 50. The Hamiltonian evolution deter-
mined by 𝜔1,2 is suppressed in a manner analogous
to the conventional Quantum Zeno Effect, but with
the modification provided by the use of joint weak
measurements. The force parameter 𝑞 shows an in-
fluence on the effectiveness between 1.0 and 0.8, but
decreases it on scale below 0.8.
4. Conclusions
An approach for suppressing the rate of loss of co-
herence and entanglement by applying multiple joint
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weak measurements to an entangled system of qubits
has been proposed. The standard Quantum Zeno Ef-
fect mitigates the Hamiltonian evolution by applying
measurements at a sufficiently high frequency in order
to freeze the evolution of the system interacting with
its thermal bath. In contrast, the method presented
here calculates the reduction in the rate of coherence
loss for the non-Hamiltonian dynamics governed by
the Lindblad equation and demonstrates the effective-
ness of applying multiple joint weak measurements
to the entangled system. This method is applicable
in cases where the exact state to be preserved is not
known, but information about the entanglement in
the system is available. An example is provided by
quantum algorithms in which a subset of qubits re-
mains idle between the application of quantum gates.
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МНОЖИННI СЛАБКI
СПIЛЬНI ВИМIРЮВАННЯ ЯК СПОСIБ
ПРИГНIЧЕННЯ ДЕКОГЕРЕНЦIЇ

Mножиннi, рiвномiрно розподiленi в часi, слабкi вимiрю-
вання застосовуються до двокубiтної заплутаної системи,
щоб зменшити швидкiсть її декогеренцiї, тобто не допу-
стити зменшення недiагональних елементiв. Схема подiбна
до квантового ефекту Зенона, але вiдрiзняється частотою
проведення вимiрювань. Якщо в традицiйному квантово-
му ефектi Зенона використовуються швидкi вимiрювання
для пригнiчення гамiльтонової динамiки, то запропонова-
ний метод використовує заплутанiсть мiж кубiтами для
зниження швидкостi декогеренцiї. Продемонстровано, що
це дозволяє частково пригнiчувати декогеренцiю в разi ево-
люцiї за рiвнянням Лiндблада.

Ключ о в i с л о в а: спiльнi слабкi вимiрювання, пригнiчен-
ня декогеренцiї, квантовий ефект Зенона, еволюцiя за рiв-
нянням Лiндблада.
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