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PACKING AND COMPRESSIBILITY OF BINARY
MICROMECHANICAL (GRANULAR) SYSTEMS

Using the Carnahan–Starling–Mansoori hard-sphere conglomeration models and the Kirkwood–
Buff statistical theory, the effect of compaction (packing) on the compressibility of a binary
granular mixture has been analyzed. The theoretical results are compared with the experimental
ones obtained in alternative studies of the systems whose internal structure corresponds to the
construction characteristics of the model. The possibility of the maximum packing effect at
special dispersion and mole fraction values of the components has been shown. The existence
of the limit and intermediate states of the mixture with a predominant concentration of one of
the components and the possibility of the most adequate description of the system properties in
such states using one of the above-mentioned approaches have been demonstrated. The interval
of values for the component volume fractions has been determined, where both approaches well
describe the data of corresponding experiments.
K e yw o r d s: granular materials, mixtures, compaction, compressibility.

1. Introduction
The study of mechanical and other physical prop-
erties of micromechanical (granular) materials is a
traditionally relevant subject of research in vari-
ous domains of both experimental and theoretical
physics. The presence of successful model approaches
to describe some artificially constructed systems un-
der specially created external conditions does not
eliminate the problem associated with the absence of
a general theory for physical processes in granular
materials, which would allow the description of all
physical phenomena and processes observed in them
from a single viewpoint. The above concerns both the
description of the observed structural formations and
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the dynamics of transitions between states with differ-
ent local symmetries. If we ignore the effects associ-
ated with dissipative interactions between the gran-
ules and the influence of the particle surface shape
in large conglomerations of micromechanical (granu-
lated) systems, then mono- and polydisperse systems
consisting of hard spheres can serve as their rather
productive model. The theory of the physical proper-
ties of such systems has been developed in detail; see,
for example, [1–4].

Note that although the hard-sphere model does not
provide a sufficient quantitative agreement between
theoretical and experimental data, just in the case
of granular materials, which are conglomerations of
micromechanical particles, it enables the qualitative
illustration of such physical phenomena as packing
and compressibility.

In this paper, based on the statements of classical
models of many-particle systems [3–5] and using the
results of experimental studies performed in the work
[6], we will show that, for a binary system of hard
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balls, the maximum compaction (packing) is possible,
which is achieved by selecting the dispersion of com-
ponents. We will also demonstrate that this type of
non-monotonicity is qualitatively repeated for such a
macroscopic property as compressibility. Thus, a re-
lation between the local characteristics and macro-
scopic properties of examined systems will be demon-
strated, which has similarity signs.

We will also demonstrate the similarities and dif-
ferences between the results obtained while describ-
ing the compressibility of model binary mixtures us-
ing the Kirkwood–Buff (KB) [5] and Carnahan–Star-
ling–Mansoori (KSM) [4] approaches and determine
intervals, where either (or even both) of them can be
applied most adequately. The KSM model is based
on a semi-empirical equation of state for a system of
hard spheres. The KB model is based on taking den-
sity fluctuations in multiparticle systems into account
using correlation integrals.

2. Compressibility
of a Two-Component
Conglomerate of Hard Spheres.
Carnahan–Starling–Mansoori Approach

The compressibility parameter is determined by the
formula

𝛽 = − 1

𝑉

𝜕𝑉

𝜕𝑝
=

1

𝑛

𝜕𝑛

𝜕𝑝
, (1)

where 𝑉 , 𝑝, and 𝑛 are the volume, pressure, and con-
centration of the system, respectively. Also used is a
quantity called the compactness – the compactness
(or packing) parameter – which is determined by the
formula

𝜂 = 𝑛𝑣0, (2)

where 𝑣0 is the volume occupied by one individual
particle. In particular, for spherical granules, 𝑣0 =
1
6𝜋𝜎

3
0 , where 𝜎0 is the particle diameter.

In the work [4], it was shown that the compressibil-
ity of a binary multi-particle mixture of hard spheres
can be represented in the following form:

𝛽
(1,2)
𝑇 =

1

𝑛12𝑘B𝑇

(1− 𝜂)4

1 + 𝑎𝜂 + 𝑏𝜂2 + 𝑐𝜂3 + 𝑑𝜂4
, (3)

where
𝜂 ≡ 𝜂12 =

1

6
𝜋𝑛12𝜎

3
12

is the compaction parameter of the binary mixture
(with components 1 and 2), 𝑛12 is the particle concen-
tration for the binary mixture, and 𝜎12 is the effective
size. The latter can be determined through the mole
fraction 𝑥,

𝜎3
12 = (1− 𝑥)𝜎3

1 + 𝑥𝜎3
2 ,

or through the volume fraction 𝑓 ,

𝜎3
12 =

𝜎3
1𝜎

3
2

(1− 𝑓)𝜎3
2 + 𝑓𝜎3

1

,

where 𝜎1 and 𝜎2 are the hard-sphere diameters of
the mixture components; the coefficients 𝑎, 𝑏, 𝑐, and
𝑑 depend on the component mole fraction 𝑥 in the
mixture (or their volume fraction 𝑓 = 𝑉𝑆/(𝑉𝐿 + 𝑉𝑆),
where 𝑉𝐿 and 𝑉𝑆 are the volumes of the fractions
consisting of large and small particles, respectively),
and on the particle size ratio 𝑟 = 𝜎1/𝜎2.

As shown in [4], these coefficients are determined
using the following expression:

𝑎 = 4− 6𝑦1, 𝑏 = 4− 3𝑦1 − 9𝑦2,
𝑐 = −4𝑦3, 𝑑 = 𝑦3,

(4)

where 𝑦1, 𝑦2, and 𝑦3 look like

𝑦1 = Δ ·
(︂√

𝑟 +
1√
𝑟

)︂
, (5)

𝑦2 = Δ ·
(︂
𝑓
√
𝑟 +

1− 𝑓√
𝑟

)︂
, (6)

𝑦3 = [(1− 𝑓)2/3 · (1− 𝑥)1/3 + 𝑓2/3 · 𝑥1/3]3, (7)

Δ =
√︀
𝑓(1− 𝑓)𝑥(1− 𝑥) ·

(︂√
𝑟 − 1√

𝑟

)︂2
. (8)

Note that the ratio between the volume and mole frac-
tions and the size ratio 𝑥 are given by the following
formulas:

𝑓 =
𝑥

𝑟3 − (𝑟3 − 1)𝑥
, 𝑥 =

𝑟3𝑓

1 + (𝑟3 − 1)𝑓
, (9)

where

𝑟3 =
𝑥

1− 𝑥

1− 𝑓

𝑓
.

Using the Carnahan–Starling–Mansoori formula
(3), we numerically calculated the coefficient
𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 ≡𝜒12 by varying the size ratio 𝑟, the vol-

ume fraction 𝑓 , and the compaction parameter 𝜂. The
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results obtained are presented as a 3-dimensional
phase diagram in Fig. 1. From this figure, it follows
that the coefficient 𝜒12 has a distinctly pronounced
maximum whose amplitude increases, whereas the
width decreases, with the growth of the mixture
dispersion factor (the ratio 𝑟 between the sizes of
the spheres). In particular, the maximum shown in
Fig. 1, a (for 𝑟 ≈ 9) is high and narrow, but it is lower
and smoother in Fig. 1, b (for 𝑟 ≈ 2). The numeri-
cal values of the compressibility coefficient decrease
as the compaction parameter increases. The position
of the maximum also shifts from 𝑓 ≈ 0.5 (for small
size ratios between the mixture components, 𝑟 ≈ 1)
to 𝑓 → 0 (for larger 𝑟-values, 𝑟 ≫ 1).

3. Calculation of the Coefficient 𝜒12

for Measured Compaction 𝜂12-Values [6]

In the work [6], a binary mixture of hard spherical
balls with different sizes was experimentally stud-
ied. The size ratio was varied within the interval
𝑟 ≈ 2÷35. As the main result obtained in [6], we
may consider non-monotonic dependences of the com-
paction parameter and the diameter ratio between the
binary mixture components on the component vol-
ume fraction, with characteristic maximums.

Using the Carnahan–Starling–Mansoori for-
mula (3), we numerically calculated the quantity
𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 at the same values of the particle size

ratio (𝑟 ≈ 2÷35) that were used when measuring the
compaction in the work [6]. In so doing, the corres-
ponding values of the mixture compaction 𝜂 mea-
sured in [6] were used self-consistently. The results
obtained are presented in Figs. 2–5 as 2-dimensional
phase diagrams.

The dependences of the compressibility coefficient
𝜒12 on the coefficient 𝑟 characterizing the dispersion
of the components, which are plotted in Fig. 2, dis-
tinctly demonstrate the presence of specific states in
the behavior of this parameter. Namely, two charac-
teristic types of behavior can be distinguished: (a) a
sharp increase of 𝜒12 with the growth of 𝑟 (the curves
were plotted for the volume fraction within the inter-
val 0.05 ≤ 𝑓 ≤ 0.20) and (b) slow changes of 𝜒12

as 𝑟 increases (the curves were plotted for the vol-
ume fraction within the interval 0.25 ≤ 𝑓 ≤ 1 and
for 𝑓 = 0). Such a difference in the behaviors of 𝜒12

can be considered as a result of different states of the
corresponding local structure. In the theoretical work

a

b
Fig. 1. Dependences of the compressibility coefficient 𝜒12 on
the mixture compaction parameter 𝜂12 and the volume fraction
𝑓 calculated by formula (3) for 𝑟 ≈ 9 (a) and 𝑟 ≈ 2 (b)

Fig. 2. Dependences of the compressibility coefficient 𝜒12

on the dispersion coefficient 𝑟 calculated by formula (3) using
the parameters from the experimental work [6]. The dispersion
coefficient 𝑟 changes within the interval 𝑟 ≈ 2÷35. The volume
fraction 𝑓 was varied with the step Δ𝑓 = 0.05 within the full
possible interval 𝑓 = 0÷1

[8], those states were proposed to call “gravel” for
𝑓 ≪ 1 and “pudding” for (1− 𝑓) ≪ 1. In these terms,
the behavior of type (a) is typical of the “gravel”
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Fig. 3. Dependences of the compressibility coefficient 𝜒12

on the volume fraction 𝑓 calculated by formula (3) using the
parameters from the experimental work [6]. The dispersion
coefficient 𝑟 changes within the interval 𝑟 ≈ 2÷35. For each
plot, the volume fraction 𝑓 was varied with the step Δ𝑓 = 0.05

within the full possible interval 𝑓 = 0÷1

Fig. 4. Dependences of the compressibility coefficient 𝜒12

calculated by formula (3) using the parameters from the work
[6] (𝑟 ≈ 3÷35)

state, and the behavior of type (b) is typical of the
“pudding” state.

The dependences of the compressibility coefficient
𝜒12 on the volume fraction 𝑓 plotted in Fig. 3 also
demonstrate the presence of the above-mentioned
limit states. Namely, (a) a sharp maximum of 𝜒12 for
the volume fraction within an interval of 0 ≤ 𝑓 ≤ 0.20
and (b) a wide minimum of 𝜒12 for the volume fraction
values within an interval of 0.25 ≤ 𝑓 ≤ 1. Such a be-
havior of 𝜒12 can also be interpreted as the presence of
the aforementioned “gravel” and “pudding” states. Ac-
cordingly, the extremum of the maximum type shown
in Fig. 3 may correspond to the “gravel” state, and
the extremum of the minimum type to the “pudding”

one. As the dispersion coefficient 𝑟 increases, the de-
termined extrema of 𝜒12 behave differently: the max-
imum increases by amplitude, whereas the minimum
initially increases, but later this growth terminates
(saturates).

The results shown in Fig. 4 demonstrate the de-
pendences of the compressibility coefficient 𝜒12 on
the compaction parameter 𝜂12 calculated using for-
mula (3) for the same values of the parameter 𝑟
(𝑟 ≈ 2÷35) as in the work [6]. According to the
classification of states for a bidisperse granular mix-
ture proposed in the work [8], their presence can also
be detected with the help of the data presented in
Fig. 4: the upper branches of the loop diagrams cor-
respond to the “gravel” phase, and the lower ones to
the “pudding” phase.

A pronounced asymmetry of the transition region is
observed in Fig. 4. It is this region, which character-
izes the transition between the selected limit phases
(on the phase diagram), that was described in [8] as
conditionally existing.

4. Compressibility of a Binary
System of Hard Spheres According
to the Kirkwood–Buff Theory [5]

The classical Kirkwood-Buff formula for a mixture of
two components (marked as 1 and 2), which describes
its isothermal compressibility 𝛽

(1,2)
𝑇 , looks like [5]

𝛽
(1,2)
𝑇 =

1

𝑘B𝑇
×

× 1 + 𝑛1𝐺11 + 𝑛2𝐺22 + 𝑛1𝑛2(𝐺11𝐺22 −𝐺2
12)

𝑛1 + 𝑛2 + 𝑛1𝑛2(𝐺11 +𝐺22 − 2𝐺12)
, (10)

where 𝑛1 = 𝑁1

𝑉 and 𝑛2 = 𝑁2

𝑉 are the partial particle
concentrations; 𝐺11, 𝐺22, and 𝐺12 are the so-called
correlation integrals; and 𝑘B𝑇 is the energy scale.

The correlation integrals 𝐺𝛼𝛽 are related to the
partial structure factors 𝑆𝛼𝛽(0) via the following re-
lationships:

𝑆𝛼𝛽(0) = 𝑥𝛼𝛿𝛼𝛽 + 𝑥𝛼𝑥𝛽𝑛12𝐺𝛼𝛽 , (11)

where 𝑥𝛼 and 𝑥𝛽 are the mole fractions of the mix-
ture components; 𝛿𝛼𝛽 is the Kronecker delta symbol,
and 𝑛12 = 𝑁

𝑉 = 𝑁1+𝑁2

𝑉 = 𝑛1 + 𝑛2 is the mixture con-
centration. Using formula (11), it is easy to obtain
that

𝑆11(0) = (1− 𝑥) + (1− 𝑥)2𝑛12𝐺11, (12)
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𝑆22(0) = 𝑥+ 𝑥2𝑛12𝐺22, (13)

𝑆12(0) = 𝑥(1− 𝑥)𝑛12𝐺12, (14)

where 𝑥 is the mole fraction of component 2 in the
mixture. Substituting relationships (12)–(14) into the
Kirkwood–Buff formula (10), we obtain the relation-
ship between the isothermal compressibility of a bi-
nary mixture and the partial factors 𝑆𝛼𝛽(0) in the
following form:

𝛽
(1,2)
𝑇 =

1

𝑛12𝑘B𝑇
×

× 𝑆11(0)𝑆22(0)− 𝑆2
12(0)

𝑥2𝑆11(0) + (1− 𝑥)2𝑆22(0)− 2𝑥(1− 𝑥)𝑆12(0)
. (15)

Taking into account that the factor 𝑆(0) of a monodis-
perse system is determined as follows:

𝑆(0) = 1 + 𝑛𝐺 = 𝑛𝑘B𝑇𝛽𝑇 , (16)

as well as Eqs. (12) and (13), we obtain the follow-
ing expressions for the partial factors of monodisperse
phases 𝑆11(0) and 𝑆22(0) with the partial isothermal
compressibilities 𝛽

(1)
𝑇 and 𝛽

(2)
𝑇 :

𝑆11(0) = (1− 𝑥) · 𝑛1𝑘B𝑇𝛽
(1)
𝑇 , (17)

𝑆22(0) = 𝑥 · 𝑛2𝑘B𝑇𝛽
(2)
𝑇 . (18)

The partial (reference) isothermal compressibilities
𝛽
(1)
𝑇 and 𝛽

(2)
𝑇 can be determined, for example, using

model equations of state. Using data on the isother-
mal compressibility of the mixture 𝛽

(1,2)
𝑇 , which can

be taken from alternative sources (for example, from
experiments or carrying out numerical simulations),
and solving Eq. (15) with respect to the factor 𝑆12(0),
we obtain
𝑆12(0) = 𝑥(1− 𝑥) · 𝜒KB

12 ±
{︁
𝑥2(1− 𝑥)2(𝜒KB

12 )2 −

−𝜒KB
12

[︀
𝑥2𝑆11(0) + (1− 𝑥)2𝑆22(0)

]︀
+

+𝑆11(0)𝑆22(0)
}︁1/2

, (19)

where 𝜒KB
12 = 𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 .

In the work [6], experimental data were obtained
for the compaction of a binary mixture of spherical
particles with various size difference for 𝑟 ≈ 2÷35.
The obtained data were actually parametrized in two
characteristic limits (states) of the mixture where the
content of either larger (“gravel”) or smaller (“pud-
ding”) particles prevails. In the work [7], an attempt

Fig. 5. Dependences of the compressibility coefficient 𝜒12 on
the volume fraction 𝑓 calculated by formulas (3) and (19) using
the parameters from the experimental work [6]. The dispersion
coefficient 𝑟 changes within the interval 𝑟 ≈ 3÷9. For each
plot, the volume fraction 𝑓 was varied with the step Δ𝑓 = 0.05

within the full possible interval 𝑓 = 0÷1

was made to describe the experimental data ob-
tained in all intermediate states by extrapolating the
phenomenological relationships, which were obtained
only for the limit states, with the help of weight func-
tions playing the role of undetermined (actually, fit-
ting) parameters. Moreover, these fconcernunctions
only the limit states and remain consistently unde-
termined at the intermediate ones.

In Fig. 5, the results of our numerical calculations
obtained for the dependences of the compressibil-
ity coefficient 𝜒12 and the structural factor 𝑆12(0)
on the volume fraction 𝑓 are exhibited. The com-
pressibility coefficient 𝜒12 was calculated by formula
(3) according to the Carnahan–Starling–Mansoori
model equation of state for a binary system of hard
spheres [4], and the structural factor 𝑆12(0) was calcu-
lated by formula (19) obtained using the Kirkwood–
Buff theory [9, 10]. The 𝜒12- and 𝑆12(0)-plots in-
tersect at two points. One of them is in the inter-
val of small volume fractions of one of the mixture
components, and the other in the interval where it
takes the largest possible values. They can be inter-
preted as the separation of two states in the mixture
with the same compaction but different component
compositions. The concentration of larger particles
(“gravel”) prevails in the first state, and the concen-
tration of smaller particles (“gravel”) prevails in the
second one.

For illustrative purposes, only selected values of the
dispersion coefficient (𝑟 ≈ 3÷9) are used in Fig. 5.
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Fig. 6. Dependences of the quantity 𝑆12(0) on the volume
fraction 𝑓 calculated by formulas (19) and (20) using the pa-
rameters from the experimental work [6] for some values of the
component size ratio 𝑟 within the interval 𝑟 ≈ 3÷9

∙ Let the fine component dominate in the mix-
ture. Then, at 𝑟 ≈ 5, we have that 𝑆12(0) = 𝜒12 at
the volume fraction 𝑓 ≈ 0.65; at 𝑟 ≈ 3, we have that
𝑆12(0) = 𝜒12 at the volume fraction 𝑓 ≈ 0.81. Thus,
as the value of the dispersion coefficient 𝑟 increases,
the value of the volume fraction 𝑓 at which 𝑆12(0) =
= 𝜒12 (the “pudding” state) decreases.

∙ Let the coarse component dominate in the mix-
ture. Then, at 𝑟 ≈ 5, we have that 𝑆12(0) = 𝜒12 at
the volume fraction 𝑓 ≈ 0.011; for 𝑟 ≈ 3, we have that
𝑆12(0) = 𝜒12 at the volume fraction 𝑓 ≈ 0.025. Thus,
as the value of the dispersion coefficient 𝑟 increases,
the value of the volume fraction 𝑓 at which 𝑆12(0) =
= 𝜒12 (the “gravel” state) also increases.

Thus, with the increase in the dispersion coeffi-
cient 𝑟, the value of the volume fraction 𝑓 , at which
𝑆12(0) = 𝜒12, (the “gravel” state) increases.

It can be shown that, for 𝑟 ≈ 9 and 𝑟 ≈ 35, the
𝑆12(0)- and 𝜒12-plots do not intersect at all. The ab-
sence of intersection points of the 𝑆12(0)- and 𝜒12-
functions coincides with the existence of the critical
dispersion coefficient value 𝑟𝑐 = 3 +

√
12 ≈ 6.46,

which was found in the work [6]. One of the quali-
tative explanations is as follows. As the dispersion of
mixture components grows starting from the 𝑟𝑐-value,
the probability that the particles of the fine compo-
nent can slip through the gaps formed by, say, three
densely packed particles of the coarse component and
fill a new free volume that was previously inaccessi-
ble for them increases, which changes the compaction
and, as a consequence, can change the mixture prop-
erties (for example, as shown in [6], the packing rate).

The existence of some critical size difference be-
tween the components, which was experimentally dis-
covered in [6] and obtained theoretically by us, mani-
fests itself by its influence on the compaction rate and
is responsible for the principle possibility of obtaining
the maximum and minimum values of this parame-
ter. Hence, for a mixture with 𝑟 < 𝑟𝑐, it is possible to
use formula (3) where the coefficient 𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 is

proportional to 𝑆12(0) (strictly speaking, this can be
done at separate points, provided the self-consistently
determined values of the volume fraction 𝑓). If 𝑟 > 𝑟𝑐,
we cannot assume the proportionality between the co-
efficient 𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 in formula (3) and 𝑆12(0).

Note also that, by postulating the replacement of
the coefficient 𝑛12𝑘B𝑇𝛽

(1,2)
𝑇 by the function 𝑆12(0) in

the Kirkwood–Buff formula (15)–recall that the func-
tion 𝑆12(0) was found in view of the previously estab-
lished possibility that the coefficient 𝜒12 and the fac-
tor 𝑆12(0) can coincide–and solving the corresponding
quadratic equation with respect to 𝑆12(0), we obtain
the following formula:

𝑆12(0) =
𝑥2𝑆11(0) + (1− 𝑥)2𝑆22(0)

2[1− 2𝑥(1− 𝑥)]
×

×

{︃
−1 +

√︃
1 +

4[1− 2𝑥(1− 𝑥)]𝑆11(0)𝑆22(0)

[𝑥2𝑆11(0) + (1− 𝑥)2𝑆22(0)]2

}︃
. (20)

In Fig. 6, the plots of the dependences of 𝑆12(0) on the
volume fraction 𝑓 calculated using expression (20) are
compared with the analogous dependences calculated
using formula (19).

As follows from Fig. 6, the dependence of 𝑆12(0)
on the volume fraction 𝑓 determined in the way de-
scribed above is non-monotonic; namely, it contains
a well-pronounced maximum. An increase in 𝑟 di-
minishes the amplitude of the 𝑆12(0) maximum and
shifts it toward smaller 𝑓 -values. The plotted depen-
dences demonstrate the following relationships be-
tween the 𝑆12(0)-values calculated by formulas (19)
and (20): they almost coincide at 𝑟 ≈ 9, are quali-
tatively similar at 𝑟 ≈ 6, and are strongly different
at 𝑟 ≈ 3. Discrepancies are observed when the mix-
ture composition approaches the monodisperse limits
(𝑓 → 0 and 𝑓 → 1). In the interval of volume fraction
values 𝑓 ≈ 0.2÷0.8, an almost complete coincidence
of the 𝑆12(0)-behavior is observed for all approaches
used for its determination.
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5. Conclusions

Taking the aforesaid into account, we come to the
conclusion that the application of the Carnahan–Star-
ling–Mansoori and Kirkwood–Buff models of binary
mixtures of hard spheres, which are effectively used
in molecular physics to describe the compressibility
properties of real granular materials, showed the non-
monotonic dependence of this parameter on the size
ratio and the mole fractions of the components. In
particular, two characteristic states characterized by
the dominant concentrations of either of the com-
ponents (which we, following the work [8], call the
gravel and pudding phases) and a transition region
where the compressibility coefficient reaches its max-
imum values can be distinguished. The availability of
the compressibility coefficient maximum at certain
volume fraction values makes it possible to charac-
terize and consistently describe (for example, in the
form of corresponding phase diagrams) the existence
of a transition zone in its behavior, which separates
the limit states (pudding and gravel) with the pre-
vailing concentrations of either of the mixture com-
ponents. Moreover, it is important to note that the
presence of the compressibility coefficient maximum,
which we have established theoretically, correlates
with a similar, experimentally revealed behavior of
the compaction factor [6]. Such a behavior, although
found at the model level, can help us to determine the
compaction values at which the compressibility coeffi-
cient calculated by formulas (3) reaches its maximum
and limit values. The intervals of the binary mixture
parameters (the limit states) at which only one of the
KSM [4] and KB [5] approaches used to describe the
mixture compressibility is applicable have been de-
termined, as well as the intermediate regions both of
them can be applied quite adequately, which is con-
firmed by the data of the corresponding experimental
measurements [6].
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Translated from Ukrainian by O.I. Voitenko

О.I. Герасимов, А.Я.Спiвак

ВПАКУВАННЯ ТА СТИСЛИВIСТЬ
БIКОМПОНЕНТНИХ МIКРОМЕХАНIЧНИХ
(ГРАНУЛЬОВАНИХ СИСТЕМ

Iз використанням моделей конгломерацiй твердих сфер
Карнахана–Старлiнга–Мансурi та статистичної теорiї Кiрк-
вуда–Баффа дослiджується вплив компактизацiї (впакува-
ння) на стисливiсть бiнарної гранульованої сумiшi. Теорети-
чнi результати порiвнюються з експериментальними, отри-
маними в альтернативних дослiдженнях на системах, вну-
трiшня структура яких вiдповiдає конструктивним хара-
ктеристикам моделi. Показано можливiсть iснування ефе-
кту максимального впакування при спецiальних значеннях
дисперсiї i мольної фракцiї компонентiв. Продемонстрова-
но iснування граничних i промiжних станiв сумiшi з пере-
важною концентрацiєю одного iз компонентiв та показано
можливiсть найбiльш адекватного опису властивостей си-
стеми в цих станах за допомогою одного iз вищезгаданих
пiдходiв. Видiлено область значень об’ємної частки компо-
нентiв, в якiй обидва пiдходи тотожнi та добре описують
данi вiдповiдних експериментiв.

Ключ о в i с л о в а: гранульованi матерiали, сумiшi, компа-
ктизацiя, стисливiсть.
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