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HIGH-EFFICIENCY SOUND
ABSORBER WITH HYBRID METAMATERIAL
STRUCTURE AT LOW FREQUENCY

A new hybrid metamaterial (HMM) comprises a circular split ring of tungsten covered by
a circular split ring of silicon carbide in a layer of polydimethylsiloxane (PDMS) polymer,
epoxy, steel, rubber, fiberglass, or carbon fiber, respectively, to develop a low-frequency sound
absorber. We carried out finite element simulations with COMSOL Multiphysics software to
take theoretical measurements for acoustic hybrid metamaterial and demonstrate the influence
of structural parameters. The results demonstrate that material type, geometric characteristics,
and change in diameter for circular split rings of tungsten with visco-thermal losses can control
the dissipative loss effect. This enables the construction of highly efficient absorber (99%) at
low frequencies across a broad low-frequency spectrum. The present study paves the way for
a novel approach to advancing the design of acoustic hybrid metamaterial and controlling
underwater acoustic waves.
K e yw o r d s: acoustic metamaterial, hybrid metamaterial, sound absorption coefficient, un-
derwater acoustic waves, noise attenuation.

1. Introduction
In the past few decades, acoustic metamaterials [1–4]
and metasurfaces [5–7] have emerged as alternative
solutions to conventional materials’ problems. Pre-
vious research has employed artificial acoustic struc-
tures, such as Helmholtz resonators, [8–10] Fabry–
Perot resonators [11, 12] split-tube resonators, co-
herent perfect absorbers, and metasurface-based ab-
sorbers [13], to build high-performance sound ab-
sorbers in the low-frequency region [14]. Acoustic
metamaterials have expanded in importance in re-
cent years because of their superior broadband sound
absorption abilities [15]. One of the unique charac-
teristics of acoustic metamaterials is their ability to
absorb low-frequency sound waves on a subwave-
length scale optimally. Using space-coiling arrange-
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ments [16–19] embedded necks [20, 21] or multi-layer
structures with holes [22–24], one can use Helmholtz
resonance in order to achieve optimal absorption
in airborne acoustics [25]. Acoustic metasurfaces are
man-made two-dimensional acoustic metamaterials
that are used in many different domains, such as
anomalous reflection, transmission, focusing, absorp-
tion, and cloaking [26], having a thickness less than
the wavelength [27]. One of the most essential as-
pects of underwater applications, such as acoustic
stealth [28], is the ability to absorb sound underwa-
ter. Furthermore, researchers have developed a va-
riety of additional materials and structures to ab-
sorb sound underwater. These include porous foam
materials. [29–32] and locally resonant acoustic ma-
terials [33–39]. At both medium and high frequen-
cies, these materials have demonstrate superior re-
sults with respect to sound absorption [40–45]. In re-
cent years, acoustic metamaterials have discovered
many great techniques for manipulating sound waves
at subwavelength scales [46–54], and a variety of in-
novative underwater sound-absorbing materials have
been produced. Researchers have conducted numer-
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Fig. 1. The simulation model represents the design of a hybrid metamaterial structure periodically arranged (a), a schematic
diagram of the hybrid metamaterial (HMM) unit (b), a schematic diagram of the hybrid metamaterial structure (3D) with
height (110 mm) (c). The HMM were placed in Aluminum tube with a square cross-section, two microphones in the one-port
technique (d)

ous studies on the integration of various resonance
effects in the design of underwater sound absorption
structures. These studies only used one type of res-
onance structure, such as holes or locally resonant
structures. To achieve perfect low-frequency under-
water sound absorption, Zhou et al. indicate a hy-
brid metamaterial consisting of a perforated panel, a
water chamber, and a coiled water channel coupled
with a rubber coating on the channel wall [55]. Chen
et al. [56–58] conducted a recent study that exam-
ined dissipative elastic metamaterials in the field of
broadband wave mitigation. The researchers explored
the wave attenuation mechanism, explicitly focus-
ing on the negative effective mass density and effec-
tive metadamping [44]. Ryoo et al. proposed a thin
acoustic metasurface that can absorb a wide range of
low-frequency noise by utilising hybrid resonant fre-
quencies [59]. Yang et al. introduced a novel hybrid-
mechanism metastructure that combines the reso-
nances of locally resonant scatterers and air cavi-

ties. This metastructure’s design allows for the effec-
tive absorption of waterborne sound across a broad
range of frequencies [44]. Zhou et al. propose a hy-
brid metamaterial, a new type of underwater absorber
consisting of carefully designed units arranged peri-
odically [45]. This paper will investigate the acous-
tic metamaterial using finite element simulations car-
ried out on the commercial multiphysics software
COMSOL interaction of hybrid metamaterial struc-
ture (HMM), which is used in studying the design
of a perfect sound absorber using HMM. First, the
hybrid metamaterial absorber comprises two circular
split rings immersed in water. Second, the ideal ab-
sorption performance of the acoustic hybrid metama-
terial is composed of a circular split ring of tungsten
that is covered by a circular split ring of silicon car-
bide enclosed by a layer of materials represented by
polydimethylsiloxane (PDMS) polymer, epoxy, steel,
rubber, fiberglass, or carbon fiber, respectively, im-
mersed in water. Finally, this work employed the in-
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Fig. 2. Schematic diagrams of the acoustic metamate-
rial structure MM1 and MM2, respectively (a) and (b).
Schematic diagram of the hybrid metamaterial structure
(HMM) (c). Sound absorption coefficients as frequency
functions at MM1 and MM2 (d) and (e). Sound ab-
sorption coefficient as frequency functions at HMM (f)

fluence of modifications for a circular split ring di-
ameter of tungsten on hybrid metamaterial absorber
performance at low frequencies.

2. Models and Methods

Figure 1, a demonstrates the proposed hybrid meta-
material structure (HMM) designed and periodically

arranged based on the two circular split rings. Each
unit cell comprises a circular split ring of tungsten
covered by a circular split ring of silicon carbide en-
closed by a material layer, as shown in Fig. 1, b, in
order to achieve super-sound absorber performance.

The COMSOL Multiphysics programmer was de-
signed to develop a theoretical model for the sound
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Fig. 3. A schematic diagram illustrates the models of hybrid
metamaterial structures (a), (b) and (c)

Table 1. Physical parameters
of material used in the simulation

Mate-
rials

Speed
of sound
[m · s−1]

Density
[Kg ·m−3]

Poisson’s
ratio (𝜈, 1)

Loss
factor
(𝜂, 1)

Young’s
modulus
(E, Pa)

Air 343 1.2 1.4 – –
Water 1490 1000 0.5 – –
Silicon
carbide 3882 3200 0.192 – 4× 1011

Tungsten 5220 17800 0.29 – 3.4× 109

Polymer
(PDMS) 1000 995 0.5 0.1 2.8× 109

Epoxy 2540 1180 0.3 0.6 1.4× 108

Steel 5825 7780 0.33 – 2× 1011

Rubber 60 1300 0.495 0.3 104

Fiberglass 2740 2000 0.23 0.05 5.2× 108

Carbon
fiber 11392 1750 0.28 – 2× 1011

absorption of the acoustic hybrid metamaterial as
𝛼 = 1− |𝑅|2, with 𝑅 representing the reflection coef-
ficient. The complex sound pressures at the measure-
ment positions are then [60]

𝑝1 = 𝑝𝑖 𝑒
𝑖𝑘𝑠1 + 𝑝𝑟𝑒

−𝑖𝑘𝑠1 , (1)

𝑝2 = 𝑝𝑖𝑒
𝑖𝑘𝑠2 + 𝑝𝑟𝑒

−𝑖𝑘𝑠2 . (2)

The two complex sound pressures can then be ob-
tained from the measurements as

𝑝𝑖 = (𝑝1𝑒
𝑖𝑘𝑠 − 𝑝2)𝑒

−𝑖𝑘𝑠1 , (3)

𝑝𝑟 = (𝑝2 − 𝑝1𝑒
−𝑖𝑘𝑠)𝑒𝑖𝑘𝑠1 , (4)

where 𝑝𝑟 and 𝑝𝑖 are reflected and incident plane
modes, respectively. The transfer function between
the complex pressures obtained at two distinct mi-
crophone locations

𝐻12 = (((𝑝1𝑒
𝑖𝑘𝑠 − 𝑝2)𝑒

−𝑖𝑘𝑠1)𝑒𝑖𝑘𝑠2 +

+((𝑝2−𝑝1𝑒
−𝑖𝑘𝑠)𝑒𝑖𝑘𝑠1)𝑒−𝑖𝑘𝑠2)/(((𝑝1𝑒

𝑖𝑘𝑠−𝑝2)𝑒
−𝑖𝑘𝑠1)×

× 𝑒𝑖𝑘𝑠1 + ((𝑝2 − 𝑝1𝑒
−𝑖𝑘𝑠)𝑒𝑖𝑘𝑠1)𝑒−𝑖𝑘𝑠), (5)

where 𝑠 is the microphone spacing, 𝑠1 is the dis-
tance between the acoustic metamaterial and the first
microphone location,𝑠2 is the distance between the
acoustic metamaterial and the second microphone lo-
cation, and 𝑘 represents the wave number, as shown
in Fig. 1, d. The following describes the transfer func-
tion of incident and reflection sound waves at the two
microphone locations

𝐻𝑖 = 𝑒𝑖𝑘𝑠1 , (6)

𝐻𝑟 = 𝑒−𝑖𝑘𝑠1 . (7)

The reflection coefficient of the acoustic metama-
terial is obtained as follows [61]

𝑅 =
𝐻12 −𝐻𝑖

𝐻𝑟 −𝐻12
𝑒2𝑖𝑘(𝑠+𝑠1). (8)

3. Results and Discussion

3.1. Effects of the acoustic
hybrid metamaterial absorber underwater

The comparison between the acoustic metamaterial
structure (MM) and a hybrid metamaterial struc-
ture (HMM) is considered. The metamaterial struc-
ture (MM1), two circular split rings from silicon car-
bide, as shown in Fig. 2, a. The metamaterial struc-
ture (MM2), two circular split rings from tungsten, as
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shown in Fig. 2, b. The hybrid metamaterial structure
(HMM), comprising a circular split ring of tungsten
that is covered by a circular split ring of silicon car-
bide, as shown in Fig. 2, c. The absorption spectrum
for typical incident sound (𝜃𝑖 = 0) was studied in the
low-frequency range. At MM1 and MM2, it can be
observed that the sound absorber (∼1) is located at
frequencies near 700 Hz and 735 Hz, respectively, as
shown in Fig. 2, d and 2, e. Fig. 2, f illustrates how
the hybrid metamaterial structure (HMM) performs
better at absorbing sound (∼1) at about 190 Hz. The
simulation results reveal that the super sound ab-
sorber of HMM is superior to that of MM1 and MM2

via adjusting the visco-thermal effect of controlling
the loss of the acoustic wave. The structured com-
posite represents a new type of acoustic metamaterial
that promises broad sound absorption applications at
low-frequency.

3.2. Effects of the acoustic
hybrid metamaterial absorber models

We design meta-absorbers based on the confirmed hy-
brid metamaterial structure in order to achieve the
best performance in perfect acoustic absorption over
a wide low-frequency range. We have structured com-
posites made from new HMM models. The hybrid
metamaterial structure is made of a circular split ring
from tungsten covered by a circular split ring from
silicon carbide, which is embedded into the materials
represented by polydimethylsiloxane (PDMS) poly-
mer, epoxy, steel, rubber, fiberglass, or carbon fiber,
respectively, as shown in Fig. 3. Table 1 presents the
physical parameters of the materials used.

The models of HMM that affect the acoustic ab-
sorption peak at low frequencies. Physical parameters
can regulate the sound absorption performance of the
HMM. In Figs. 3, a and 3, b, we focus on the effect of
HMM1 and HMM2 on sound absorbers. Figure 4, a
shows the peak value of 𝛼 at (∼1) within the fre-
quency range of 465 Hz and 455 Hz, respectively. We
also investigated the sound absorption performance
of the hybrid metamaterial absorbers under differ-
ent physical parameters in HMM3 and HMM4. The
simulated perfect absorption curve in Fig. 4, b is
visible at approximately 300 Hz and 280 Hz fre-
quencies, respectively. Figure 4, c shows the influ-
ence of the materials (fiberglass and carbon fiber) of
HMM5 and HMM6, respectively, on the sound ab-
sorption performance of the hybrid metamaterial ab-

a

b

Fig. 4. Sound absorption coefficients as frequency functions
for hybrid metamaterial structures (a), (b) and (c)

sorber. The acoustic absorption is achieved at (∼1)
with the values of the frequencies at 255 Hz and
245 Hz, respectively. The simulation results reveal
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a b

c d
Fig. 5. The schematic diagram of the hybrid metamaterial structure (HMM5 and HMM6) for a diameter 5 mm (a). The schematic
diagram of the hybrid metamaterial structure (HMM5 and HMM6) for a diameter 12.5 mm (b). (c) The sound absorption as
frequency functions for a diameter 5 mm at HMM5 and HMM6, respectively (c). The sound absorption as frequency functions
for a diameter 12.5 mm at HMM5 and HMM6, respectively (d)

the efficient acoustic hybrid metamaterial absorber
underwater. These results indicate that the newly
designed hybrid metamaterial structure has perfect
acoustic absorber properties and will be promising in
reducing noise. The structural and material parame-
ters of the proposed hybrid metamaterial closely in-
fluence its acoustic absorber. The HMM5 and HMM6

can achieve superior sound absorption at 255 Hz and
245 Hz, respectively. It combines the low-frequency
performance of the physics material parameters with

the energy dissipation effect. The novelty-designed
HMM5 and HMM6 have highly efficient sound ab-
sorption properties and will be helpful in engineering
applications.

Our study of the impact of modifying the circular
split ring diameter for tungsten at the HMM5 and
HMM6 structures has the potential to enhance sound
absorption significantly. The HMM5 and HMM6 have
5 mm and 12.5 mm diameters, respectively, as shown
in Figs. 5, a and 5, b. At frequencies of 545 Hz and
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525 Hz, we show unitary sound absorption at a diam-
eter of (5 mm) in HMM5 and HMM6, respectively, as
shown in Fig. 5, c. In Fig. 5, d, we show that the per-
fect sound absorption peak in HMM5 and HMM6 is
around 190 Hz and 225 Hz at diameter (12.5 mm),
respectively. It was observed that viscous damping
and friction loss achieve superior acoustic absorp-
tion. These results show that a 12.5 mm diameter is a
high-efficiency sound absorber and achieves new pos-
sibilities in underwater acoustic applications.

4. Conclusion

In summary, we constructed a hybrid metamaterial
structure (HMM) to satisfy the highly efficient acous-
tic absorber at low frequencies immersed in water
by creating a circular split ring from tungsten cov-
ered by a circular split ring of silicon carbide em-
bedded into the materials. The ability of two circular
split rings enclosed by a layer of polydimethylsilox-
ane (PDMS) polymer, epoxy, steel, rubber, fiberglass,
or carbon fiber, respectively, to enhance acoustic ab-
sorption. The theory of the sound absorber of hybrid
metamaterial is proposed. Our investigation focused
on the concept of an HMM absorber with changes in
the physical parameters of the material and the diam-
eter of circular split rings for tungsten. This feature
was exploited for sound absorbers by adjusting the
periodic arrangement of metamaterial structure and
the physical parameters. This resulted in enhanced
dissipation acoustic wave energy capabilities due to
friction. The hybrid metamaterial designed for highly
efficient absorption demonstrates significant poten-
tial, achieving near to (𝛼 ∼ 1) absorption at frequen-
cies below 300 Hz. The HMM5 and HMM6 are con-
sidered structures with a high absorption capacity for
sound waves at low frequencies for 12.5 mm diame-
ter of the inner rings. This paper is significant for the
development of acoustic hybrid metamaterial and the
manipulation of underwater acoustic waves.
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Ф.Н. Геафер, Н.Х.Абдалам

ВИСОКОЕФЕКТИВНЕ ПОГЛИНАННЯ
ЗВУКУ НИЗЬКОЇ ЧАСТОТИ СТРУКТУРОЮ
З ГIБРИДНИМ МЕТАМАТЕРIАЛОМ

Ми виготовили та дослiдили новий поглинач звуку низької
частоти з нового гiбридного метаматерiалу, який складає-
ться з круглого розрiзного кiльця з вольфраму, покритого
круглим розрiзним кiльцем карбiду кремнiю в шарi полiме-
ру полiдиметилсилоксану (PDMS), епоксидної смоли, сталi,
гуми, скловолокна або вуглецевого волокна, вiдповiдно. Ми
провели моделювання методом скiнченних елементiв за до-
помогою програмного забезпечення COMSOL Multiphysics.
Результати показують, що запропонований пiдхiд дозволяє
створювати високоефективний поглинач (99%) у широко-
му дiапазонi низькочастотного спектра. Дане дослiджен-
ня прокладає шлях до вдосконалення проектування аку-
стичного гiбридного метаматерiалу та контролю, зокрема,
пiдводних акустичних хвиль.

Ключ о в i с л о в а: акустичний метаматерiал, гiбридний
метаматерiал, коефiцiєнт поглинання звуку, акустичнi пiд-
воднi хвилi, затухання шуму.
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