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MINIMUM (DIP) AND MAXIMUM (BUMP)
IN PROTON’S SINGLE DIFFRACTIVE
DISSOCIATION AT THE LHC 1

A dip-bump structure in the squared four-momentum transfer (𝑡) distribution of proton’s single
and double diffractive distributions is predicted around 𝑡 ≈ −4 GeV2 for single diffractive
distribution at LHC energies.
K e yw o r d s: dip-bump structure, squared four-momentum transfer, LHC, proton’s diffractive
distributions.

1. Introduction. Single, Double,
and Central Diffractive Dissociation

Measurements of single (SD), double (DD) and cen-
tral (CD) diffraction dissociation distributitions is
among the priorities of the LHC research program. As
for now, a lot of studies of high-energy diffraction dis-
sociation physics were performed at different research
programs, e..g., at the Fermilab (Tevatron) or the
LHC (ALICE, SPS, ...). Back in the 2000s, K. Gou-
lianos, in a series of papers [1] introduced the the-
oretical approach to calculate the cross sections for
single, double, and central diffractions.

The basic configurations of reactions with diffrac-
tive dissociation (DD) are listed below and shown in
Fig. 1. Each one is characterized by large rapidity
gaps corresponding to the exchange of a trajectory
with vacuum quantum numbers (Pomeron). Mul-
ti-gap reactions with multi-pomeron exchanges are
also possible, when the incoming energy is large
enough.

Starting from the 70-ies, DD was intensively theo-
retically studied. At the Fermilab, a rich spectrum of
resonances in missing masses was revived, still wait-
ing for a better physical interpretation.
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An approach based on the Regge-pole factoriza-
tion was developed in a series of papers [2] see [5]
and references therein, where single- and double DD
were studied with emphases on resonances in missing
masses treated on the basis of an original duality-
based model.

In the present paper we continue our program fo-
cused on the resonance production in missing masses,
this time in the framework of the of the Goulianos–
Ciesielski model [3], modified by including resonances
in missing masses. A novel development is the study
of a possible dip-bump structure is SD and DD.

We consider diffraction dissociation with configu-
rations shown in Fig. 1 and listed below:

Elastic (1): 𝑝𝑝 → 𝑝𝑝, (1)

SD (2): 𝑝𝑝 → 𝑝𝑋(𝑝𝑌 ), (2)

DD (3): 𝑝𝑝 → 𝑋𝑌, (3)

CD (DPE) (4): 𝑝𝑝 → 𝑝𝑍𝑝, (4)

CDS (5): 𝑝𝑝 → 𝑋𝑍𝑝, (5)

CDD (6): 𝑝𝑝 → 𝑋𝑍𝑌, (6)

where 𝑋 and 𝑌 represent diffraction dissociated pro-
tons (nucleon resonances), and 𝑍 are diffraction pro-
duced mesons in the central system. Note that SD (2)

1 This work is based on the results presented at the 2024 “New
Trends in High-Energy and Low-x Physics” Conference.
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Fig. 1. Diagrams of elastic scattering (EL) and diffraction dissociation (single, dou-
ble, and central)

implies two symmetric reactions, i.e., 𝑝+𝑝′ → 𝑋+𝑝′

and 𝑝 + 𝑝′ → 𝑝 + 𝑋. Schematically, those processes
are shown in Fig. 1. Many more diffraction dissoci-
ation configurations (e.g., those with multi-Pomeron
exchanges) are possible.

2. The Model

The differential cross section for SD, DD, and CD can
be written as [1, 3].

2.1. DD
Assuming the Regge factorization, the DD cross sec-
tion may be obtained from the SD and elastic scat-
tering cross section:

𝑑3𝜎DD

𝑑𝑡𝑑𝜉1𝑑𝜉2
=

1

𝑑𝜎𝑒𝑙/𝑑𝑡

𝑑2𝜎SD1

𝑑𝑡𝑑𝜉1

𝑑2𝜎SD2

𝑑𝑡𝑑𝜉2
=

=

⃦⃦⃦⃦
⃦𝑑𝜎𝑒𝑙

𝑑𝑡
=

𝛽4(𝑡)

16𝜋

(︂
𝑠

𝑠0

)︂2𝛼(𝑡)−2
⃦⃦⃦⃦
⃦ =

=
1

𝑁(𝑠)

[︃
𝑠/𝑠0
16𝜋

(︂
𝑠𝜉1𝜉2
𝑠0

)︂1−2𝛼(𝑡)
]︃
×

×𝜎𝑃𝑝
1𝑇 (𝑠𝜉1)𝜎

𝑃𝑝
2𝑇 (𝑠𝜉2) (7)

and, for 𝑀2 variable:

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

=
1

𝑑𝜎𝑒𝑙/𝑑𝑡

𝑑2𝜎SD1

𝑑𝑡𝑑𝑀2
1

𝑑2𝜎SD2

𝑑𝑡𝑑𝑀2
2

=

=
1

𝑁(𝑠)

[︃
1

16𝜋𝑀2
1𝑀

2
2

(︂
𝑀2

1𝑀
2
2

𝑠 𝑠0

)︂2−2𝛼(𝑡)
]︃
×

×𝜎𝑃𝑝
1𝑇 (𝑀2

1 )𝜎
𝑃𝑝
2𝑇 (𝑀2

2 ), (8)

where 𝜎𝑃𝑝
𝑖𝑇 is the total Pomeron-proton cross section

for each vertices, 𝑖 = 1, 2.

2.2. CD
Using factorization, the CD cross section can be writ-
ten as follows:

𝑑4𝜎CD

𝑑𝑡1𝑑𝑡2𝑑𝜉1𝑑𝜉2
=

1

𝜎𝑝𝑝
𝑇

𝑑2𝜎SD1

𝑑𝑡1𝑑𝜉1

𝑑2𝜎SD2

𝑑𝑡2𝑑𝜉2
=

=

⃦⃦⃦⃦
𝜎𝑝𝑝
𝑇 = 𝛽2(0)

(︂
𝑠

𝑠0

)︂𝛼(0)−1 ⃦⃦⃦⃦
=

=
1

𝑁(𝑠)𝛽2(0)(𝑠/𝑠0)𝛼(0)−1

[︂
𝛽2(𝑡1)

16𝜋
𝜉1

1−2𝛼(𝑡1)

]︂
×

×
[︂
𝛽2(𝑡2)

16𝜋
𝜉2

1−2𝛼(𝑡2)

]︂
𝜅𝜎𝑃𝑃

𝑇 (𝑠𝜉1𝜉2), (9)

where 𝜎𝑃𝑃
𝑇 is the total Pomeron-Pomeron cross

section.

3. Resonances in Missing Masses

The above model [3] is valid for large, Regge be-
haved missing masses. Our innovation is in the ex-
tension of the model valid also in the region of mod-
erate 𝑀2

𝑖 , dominated by resonances. The idea [2] is
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based on duality, by which resonances the direct
channel are produced by the pole decomposition of
the dual amplitude, dominated by “reggeized” Breit–
Wigner poles with non-linear, complex direct-channel
Regge trajectories, providing for finite widths of res-
onances. The expressions in curly and square brack-
ets of the above equations can be interpreted as the
Pomeron-proton total cross section 𝜎𝑃𝑝 and so-called
Pomeron fluxes 𝑓𝑃𝑝, emitted by the diffractively scat-
tered proton. Regge-behaved total proton-Pomeron
cross sections are used in most of the papers on
the subject. This cross section will be replaced by a
reggeized dual Breit–Wigner model introduced in [2],
reproducing direct-channel resonances.

The 𝛾*𝑝 total cross section is related to the struc-
ture function by

𝐹2(𝑥,𝑄
2) =

𝑄2(1− 𝑥)

4𝜋𝛼(1 + 4𝑚2𝑥2/𝑄2)
𝑡𝜎𝛾*𝑝

𝑡 , (10)

where 𝛼 is the fine structure constant, 𝑄2 = −𝑞2,
and 𝑥 = 𝑄2

2𝑝·𝑞 is the Bjorken variable. Since 𝑀2 =

= (𝑝+ 𝑞)2 = 𝑝2+ 𝑞2+2𝑝 · 𝑞, 𝑝 · 𝑞 = 1
2 (𝑀

2+𝑄2−𝑚2
𝑝),

where 𝑚𝑝 is the proton mass.
Alternatively,

𝜎𝛾*𝑝
𝑡 (𝑥,𝑄2) =

8𝜋

𝑃CM
√
𝑠
Im𝐴𝛾*𝑝(𝑠(𝑥,𝑄2), 𝑡 = 0, 𝑄2).

(11)

where 𝑃CM is the absolute value of center of
mass momentum of the reaction, 𝑃CM = 𝑠−𝑚2

2(1−𝑥) ×

×
√︁

1+4𝑚2
𝑝𝑥

2/𝑄2

𝑠 for DIS with 𝑠 = (𝑝 + 𝑞)2 ≡ 𝑀2.
Thus, we have

𝐹2(𝑥,𝑄
2) =

4𝑄2(1− 𝑥)2

𝛼 (𝑠−𝑚2) (1 + 4𝑚2𝑥2/𝑄2)3/2
×

× Im𝐴𝛾*𝑝(𝑠(𝑥,𝑄2), 𝑡 = 0, 𝑄2). (12)

A Reggeon (here, the Pomeron) is similar to the
photon. Hence, Pomeron-proton interaction is similar
to photon-proton DIS, where −𝑄2 = 𝑞2 → 𝑡 and
𝑠 = 𝑊 2 → 𝑀2. Thus, replacing the virtual photon
to a Pomeron. Substituting 𝑄2 = −𝑡, 𝑠 = 𝑀2, we
obtain:

𝐹2(𝑀
2, 𝑡) =

−𝑡4(1− 𝑥)2

𝛼
(︀
𝑀2 −𝑚2

𝑝

)︀ (︀
1 + 4𝑚2

𝑝𝑥
2/−𝑡

)︀3/2 ×

× Im𝐴𝑃𝑝(𝑀2, 𝑡), (13)

where 𝑥 ≡ 𝑥(𝑀2, 𝑡) and, instead of 𝑥, we use 𝑀2 as
a variable.
𝐹2 = 𝜈𝑊2, where 𝜈 = −𝑡

2𝑚𝑝𝑥
. The contribution of

the 𝑃𝑝 vertex to the differential cross section of the
diffractive processes is 𝑊̃𝑃𝑝 = 𝑊2

2𝑚𝑝
.

3.1. Pomeron-Pomeron scattering

Most of the studies on diffraction dissociation, sin-
gle, double, and central, use the triple Reggeon for-
malism. This approach is useful in the smooth Regge
region, beyond the resonance region, but is not ap-
plicable for the production of low masses which is
dominated by resonances. We solve this problem by
using a dual model.

The one-by-one account for the single resonances
is possible, but not economic for the calculation of
cross section, to which a sequence of many resonances
contributes at low masses. These resonances overlap
and gradually disappear in the continuum at higher
masses.

For our purpose of central production, the direct-
channel pole decomposition of the dual amplitude
𝐴(𝑀2, 𝑡) is relevant. Different trajectories 𝛼𝑖(𝑀

2)
contribute to this amplitude, with 𝛼𝑖(𝑀

2) a non-
linear, complex Regge trajectory in the Pomeron-
Pomeron system,

𝐴(𝑀2, 𝑡) = 𝑎
∑︁

𝑖=𝑓,𝑃

∑︁
𝐽

[𝑓𝑖(𝑡)]
𝐽+2

𝐽 − 𝛼𝑖(𝑀2)
. (14)

The pole decomposition of the dual amplitude
𝐴(𝑀2, 𝑡) is shown in Eq. (14), with 𝑡 the squared
momentum transfer in the 𝑃𝑃 → 𝑃𝑃 reaction. The
index 𝑖 sums over the trajectories which contribute
to the amplitude. Within each trajectory, the second
sum extends over the bound states of spin 𝐽 . The
prefactor 𝑎 in Eq. (14) is of numerical value 𝑎 =
= 1 GeV−2 = 0.389 mb.

The pole residue 𝑓(𝑡) appearing in the 𝑃𝑃 → 𝑃𝑃
system is fixed by the dual model, in particular, by
the compatibility of its Regge asymptotics with Bjor-
ken scaling and reads

𝑓(𝑡) = (1− 𝑡/𝑡0)
−2, (15)

where 𝑡0 is a parameter to be fitted to the data. Ho-
wever, due to the absence of data so far, we set 𝑡0 =
= 0.71 GeV2 for the moment as in the proton elastic
form factor.
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The imaginary part of the amplitude 𝐴(𝑀2, 𝑡)
given in Eq. (14) is defined by

Im𝐴(𝑀2, 𝑡) =

= 𝑎
∑︁

𝑖=𝑓,𝑃

∑︁
𝐽

[𝑓𝑖(𝑡)]
𝐽+2Im𝛼𝑖(𝑀

2)

(𝐽 − Re𝛼𝑖(𝑀2))2 + (Im𝛼𝑖(𝑀2))2
. (16)

Recall that the amplitude 𝐴 and the cross section
𝜎𝑡 carry dimensions of mb due to the dimensional
parameter 𝑎 discussed above. The Pomeron-Pomeron
channel, 𝑃𝑃 → 𝑀2, couples to the Pomeron and
𝑓 channels dictated by the conservation of quantum
numbers. In order to calculate the 𝑃𝑃 cross section,
we, therefore, consider the trajectories associated to
the 𝑓0(980) and to the 𝑓2(1270) resonance, and the
Pomeron trajectory.

3.2. Inclusion of resonances in the model

As we mentioned above, the Goulianos model is valid
only for large 𝑀2 and not for the resonance region
(roughly, 𝑀 ∼ 1–4 GeV). Therefore, the expression
in curly brackets should be replaced by reggeized dual
Breit–Wigner resonances.

Using the transition factors, we get the following
extension of single and double diffractive dissocia-
tions:

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
=

1

𝑁(𝑠)
𝑓𝑃/𝑝(𝑀

2, 𝑡, 𝑠) · 𝜎𝑃𝑝
𝑇 (𝑀2, 𝑡, 𝑠), (17)

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

=
1

𝑁(𝑠)
𝑓𝑃/𝑝(𝑀

2
1𝑀

2
2 , 𝑡, 𝑠)×

×𝜎𝑃𝑝
𝑇 (𝑀2

1 , 𝑡, 𝑠)𝜎
𝑃𝑝
𝑇 (𝑀2

2 , 𝑡, 𝑠), (18)

where the Pomeron-proton total cross section 𝜎𝑃𝑝
𝑇 is

the sum of 𝑁* resonances (𝜎𝑃𝑝
Res) and the background

corresponding to a smooth function:

𝜎𝑃𝑝
𝑇 (𝑀2, 𝑡) = 𝐴res · 𝜎𝑃𝑝

Res(𝑀
2, 𝑡) + 𝜎𝑃𝑝

𝐵𝑔(𝑀
2), (19)

the background is:

𝜎𝑃𝑝
𝐵𝑔(𝑀

2) = 𝑎 · 𝜅 · 𝛽2(0) · (𝑀2)𝜖, (20)

and 𝐴res is the free parameter obtained by the fits. In
Eq. (19), we write 𝜎𝑃𝑝

Res assuming that Eq. (11), we
replace the virtual photon with the Pomeron and ap-
ply the substitutions −𝑄2 = 𝑡, 𝑠 = 𝑀2. With these
manipulations, we can write:

𝜎𝑃𝑝
Res(𝑀

2, 𝑡) =
8𝜋

𝑃CM

√
𝑀2

Im𝐴(𝑀2, 𝑡), (21)

𝑃CM =
𝑀2 −𝑚2

𝑝

2(1− 𝑥)

√︃
1− 4𝑚2

𝑝𝑥
2/𝑡

𝑀2
, (22)

Im𝐴(𝑀2, 𝑡) =

= 𝑎
∑︁
𝑛=1,6

[𝑓(𝑡)]2(𝑛+1)Im𝛼𝑁*(𝑀2)

(2𝑛+ 0.5−Re𝛼𝑁*(𝑀2))2+(Im𝛼𝑁*(𝑀2))2
,

(23)

where 𝑚𝑝 = 0.938 GeV is the proton mass, 𝑎 =
= 0.3894 mb gives us the cross section in [mb],
𝑥(𝑀2, 𝑡) = −𝑡

𝑀2−𝑚2
𝑝−𝑡 , and 𝛼𝑁*(𝑀2) is a direct-

channel complex, non-linear Regge trajectory .
Using the central diffraction dissociation transition

equation Eq. (9), one can write:

𝑑4𝜎𝐶𝐷

𝑑𝑡1𝑑𝑡2𝑑𝜉1𝑑𝜉2
=

1

𝑁(𝑠)𝛽2(0)(𝑠/𝑠0)𝛼(0)−1
×

× 𝑓𝑃/𝑝(𝜉1, 𝑡1)𝑓𝑃/𝑝(𝜉2, 𝑡2) · 𝜅 · 𝜎𝑃𝑃
𝑇 (𝑠𝜉1𝜉2, 𝑡1, 𝑡2). (24)

4. Compilation of the Basic Formulae

This section contains a compilation of the main
equations used in the calculations and the fitting
procedure.

The single diffraction dissociation (SD) differential
cross section is:

𝑑2𝜎SD

𝑑𝑡𝑑𝜉
=

1

𝑁(𝑠)

[︂
𝛽2(𝑡)

16𝜋
(𝜉)

1−2𝛼(𝑡)

]︂
𝜎𝑃𝑝
𝑇 (𝑠𝜉, 𝑡), (25)

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
=

1

𝑁(𝑠)

[︃
1

𝑀2

𝛽2(𝑡)

16𝜋

(︂
𝑀2

𝑠

)︂2−2𝛼(𝑡)
]︃
𝜎𝑃𝑝
𝑇 (𝑀2, 𝑡),

(26)
and for the log10 𝜉 variable is:

𝑑2𝜎SD

𝑑𝑡𝑑 log10 𝜉
= ln 10 · 𝜉 · 𝑑

2𝜎SD

𝑑𝑡𝑑𝜉
(𝜉, 𝑡, 𝑠), (27)

where 𝜉 ∈ [log10(1.4/𝑠); log10 0.05].
The double diffraction dissociation (DD) differen-

tial cross section:

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

=
1

𝑁(𝑠)

[︃
1

16𝜋𝑀2
1𝑀

2
2

(︂
𝑀2

1𝑀
2
2

𝑠𝑠0

)︂2−2𝛼(𝑡)
]︃
×

×𝜎𝑃𝑝
𝑇 (𝑀2

1 , 𝑡)𝜎
𝑃𝑝
𝑇 (𝑀2

2 , 𝑡). (28)

The central diffraction dissociation (CD) differen-
tial cross section is:

𝑑4𝜎CD

𝑑𝑡1𝑑𝑡2𝑑𝜉1𝑑𝜉2
=

1

𝑁(𝑠)𝛽2(0)(𝑠/𝑠0)𝛼(0)−1
×
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×
[︂
𝛽2(𝑡1)

16𝜋
𝜉1

1−2𝛼(𝑡1)

]︂[︂
𝛽2(𝑡2)

16𝜋
𝜉2

1−2𝛼(𝑡2)

]︂
×

×𝜅 · 𝜎𝑃𝑃
𝑇 (𝑠𝜉1𝜉2, 𝑡). (29)

The slope 𝐵 of the cone is defined as follows:

𝐵 =
𝑑

𝑑𝑡

𝑑𝜎

𝑑𝑡
. (30)

The cross-integrated cross sections vs. 𝑀2 (vs. t)
are calculated as:

𝑑𝜎SD

𝑑𝑀2
=

0∫︁
−1

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
𝑑𝑡, (31)

𝑑𝜎SD

𝑑𝑡
=

0.05𝑠∫︁
1.4

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
𝑑𝑀2, (32)

for the case of SD, and

𝑑2𝜎DD

𝑑𝑀2
1 𝑑𝑀

2
2

=

0∫︁
−1

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

𝑑𝑡, (33)

𝑑𝜎DD

𝑑𝑡
=

0.05𝑠/1.4∫︁
1.4

𝑑𝑀2
1

0.05𝑠/𝑀2
1∫︁

1.4

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

𝑑𝑀2
2 . (34)

for the case of DD.
We also calculated the cross integrated cross sec-

tion vs. log10 𝜉 for SD:

𝑑𝜎SD

𝑑 log10 𝜉
=

0∫︁
−1

𝑑2𝜎SD

𝑑𝑡𝑑 log10 𝜉
𝑑𝑡. (35)

The fully integrated cross sections are given by the
further equations:

𝜎SD =

0.05𝑠∫︁
1.4

𝑑𝑀2

0∫︁
−1

𝑑𝑡
𝑑2𝜎SD

𝑑𝑀2𝑑𝑡
, (36)

𝜎DD =

0.05𝑠∫︁
1.4

𝑑𝑀2
1

0.05𝑠/𝑀2
1∫︁

1.4

𝑑𝑀2
2

0∫︁
−1

𝑑3𝜎DD

𝑑𝑡𝑑𝑀2
1 𝑑𝑀

2
2

𝑑𝑡, (37)

𝜎CD =

0.05∫︁
1.4/𝑠

𝑑𝜉1

0.05/𝜉1∫︁
1.4/𝑠

𝑑𝜉2

0∫︁
−1

𝑑𝑡1

0∫︁
−1

𝑑𝑡2
𝑑𝜎4

CD

𝑑𝑡1𝑑𝑡2𝑑𝜉1𝑑𝜉2
.

(38)

5. Dip and Bump

High-energy hadron scattering is characterized by a
forward peak followed by possible dips and bumps.
The slope of the forward peak shrinks with energy
and is related to the radii of the scattering particles.
Multiple dips and bumps appear in nuclei scattering,
but only a single structure is seen in 𝑝𝑝 scattering.

Proton elastic scattering and diffractive dissocia-
tion, single (SD) and double (DD) are closely related
reactions. They were studied at the ISR, SPS, FNAL
and are being studied at the LHC. Till now, no struc-
tures were seen in the differential cross sections of SD
or DD.

For SD and DD, we use the model developed in a
number of papers for elastic scattering, see [5] and
earlier references. The scattering amplitude in that
model is similar to that of elastic scattering, the elas-
tic vertices being replaced by DIS structure functions.

The position of the structures in 𝑡 depends on the
energy, missing masses as well and are sensitive to
the slopes of the SD and DD cones. The general trend
is that the decreasing slope moves the structures to-
wards larger −𝑡. Most of the present measurements at
the LHC are in the region of large missing masses and
small 𝑡. With the present paper, we encourage exper-
imentalists to measure the −𝑡 dependence of SD and
DD beyond several GeV2 for varying missing masses.

6. Dip and Bump in Elastic Scattering

The dipole pomeron scattering amplitude is defined
as [4]

𝐴𝑃 (𝑠, 𝑡) =
𝑑

𝑑𝛼𝑃

[︁
e−𝑖𝜋𝛼𝑃 /2𝐺(𝛼𝑃 )

(︁
𝑠/𝑠0𝑃

)︁𝛼𝑃
]︁
=

= e−𝑖𝜋𝛼𝑃 (𝑡)/2(𝑠/𝑠0𝑃)
𝛼𝑃 (𝑡) ×

×
[︁
𝐺′(𝛼𝑃 ) +

(︁
𝐿𝑃 − 𝑖𝜋/2

)︁
𝐺(𝛼𝑃 )

]︁
, (39)

where 𝐿𝑃 = ln (𝑠/𝑠0𝑃 ). Since the first term in
squared brackets determines the shape of the cone,
one fixes

𝐺′(𝛼𝑃 ) = 𝑎𝑃 e
𝑏𝑃 [𝛼𝑃−𝛼0𝑃 ], (40)

where 𝛼0𝑃 is the intercept of 𝛼𝑃 . 𝐺(𝛼𝑃 ) is recovered
by integration:

𝐺(𝛼𝑃 ) =

∫︁
𝑑𝛼𝑃𝐺

′(𝛼𝑃 ) =

= 𝑎𝑃

(︁
e𝑏𝑃 [𝛼𝑃−𝛼0𝑃 ]/𝑏𝑃 − 𝛾𝑃

)︁
. (41)
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The integration constant 𝛾 alone has no physical mea-
ning, but its numerical value affects strongly the fits.

From the LHC energies on, the contribution from
secondary Reggeons can be neglected, and one can
rely on the Pomeron contribution only, eventually
supplied by the odderon,

𝐴𝑝𝑝
𝑝𝑝(𝑠, 𝑡) = 𝐴𝑃 (𝑠, 𝑡)∓𝐴𝑂(𝑠, 𝑡), (42)

𝐴𝑂(𝑠, 𝑡) = −𝑖𝐴𝑃→𝑂(𝑠, 𝑡). (43)

By introducing the parameter 𝜖𝑃 = 𝛾𝑃 𝑏𝑃 , the
pomeron amplitude Eq. (39) can be rewritten in a
geometrical form:

𝐴𝑃 (𝑠, 𝑡) = 𝑖
𝑎𝑃
𝑏𝑃

(︂
𝑠

𝑠0𝑃

)︂𝛼0𝑃

𝑒−
𝑖𝜋
2 (𝛼0𝑃−1) ×

×
[︁
𝑟21𝑃 e

𝑟21𝑃 [𝛼𝑃 (𝑡)−𝛼0𝑃 ] − 𝜀𝑃 𝑟
2
2𝑃 e

𝑟22𝑃 [𝛼𝑃 (𝑡)−𝛼0𝑃 ]
]︁
, (44)

where 𝑟21𝑃 (𝑠) = 𝑏𝑃 + 𝐿𝑃 − 𝑖𝜋/2 and 𝑟22𝑃 (𝑠) = 𝐿𝑃 −
− 𝑖𝜋/2.

We use the norm where:

𝜎tot(𝑠) =
4𝜋

𝑠
Im𝐴(𝑠, 𝑡 = 0), (45)

d𝜎𝑒𝑙

d𝑡
(𝑠, 𝑡) =

𝜋

𝑠2
|𝐴 (𝑠, 𝑡)|2 . (46)

Fits to the data by the Regge dipole pomeron and
odderon can be found, e.g., in papers [5, 6].

A dipole amplitude generates a dip-bump struc-
ture in the differential cross section. The position of
the minimum (dip) and the maximum (bump) of the
elastic differential cross section are

−𝑡dip =
1

𝛼′𝑏
ln

(𝑏+ 𝐿)

𝛾𝑏𝐿
(47)

and

−𝑡bump =
1

𝛼′𝑏
ln

[︀
4(𝑏+ 𝐿)2 + 𝜋2

]︀
𝛾𝑏(4𝐿2 + 𝜋2)

. (48)

The positions of the dip and bump depend on poorly
known slope 𝑏 of the connected with the differen-
tial cross section. The smaller the value of 𝑏, the
higher the |𝑡| value, where the dip-bump structure
appears. Thus, in the picture provided by the dipole
Regge framework, it is natural to expect that, in sin-
gle diffractive dissociation, a possible dip-bump struc-
ture appears at higher |𝑡| values, than it does in elastic
scattering.

It is known that, in 𝑝𝑝 elastic scattering, the slope
of the diffraction cone is energy-dependent and rises
with increasing energy. At the same time, as the ener-
gy rises, the position of the dip-bump structure moves
to smaller −𝑡 values. The energy-dependent slope is
given by the derivative of the logarithm of the diffe-
rential cross section at 𝑡 = 0. In the case of a single
diffraction dissociation, the slope of the differential
cross section depends not only on the energy, but also
on the mass squared of the produced hadronic sys-
tem as discussed above. Thus, in parallel to the elas-
tic scattering it is not surprising that the dip-bump
structure of the differential cross section of single diff-
raction, through the mass dependence moves in −𝑡.

7. From Elastic Scattering
to Single Diffractive Dissociation (SD)

To generate a dip-bump structure in single diffrac-
tion dissociation, we introduce a dipole pomeron and
odderon exchange to the differential cross section.

In the triple Regge approach, the triple PPP ex-
change contribution to the SD differential cross sec-
tion is
𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
=

1

16𝜋2

1

𝑀2
𝑔2𝑃𝑝𝑝(𝑡)

(︀
𝑠/𝑀2

)︀2𝛼𝑃 (𝑡)−2 ×

× 𝑔𝑃𝑃𝑃 (𝑡)𝑔𝑃𝑝𝑝(0).(𝑀
2)𝛿𝑃. (49)

It is nearly 𝑡 independent, thus 𝑔𝑃𝑃𝑃 (𝑡) ≃ 𝑔𝑃𝑃𝑃 (0).
We have, for the 𝑡-dependent part of the SD ampli-
tude:

𝐴SP
SD(𝑠,𝑀

2, 𝛼𝑃 ) ∼ 𝜂(𝛼𝑃 )𝐺𝑃 (𝛼𝑃 )(𝑠/𝑀
2)𝛼𝑃, (50)

where the 𝑡-dependence resulting from 𝑔𝑃𝑝𝑝(𝑡) is ac-
counted for by 𝐺(𝛼). Hence, the 𝑡-dependent part of
the dipole pomeron amplitude is:

𝐴DP
SD (𝑠,𝑀2, 𝛼𝑃 ) =

𝑑

𝑑𝛼𝑃
𝐴SP

SD(𝑠,𝑀
2, 𝛼) ∼ e−𝑖𝜋𝛼/2 ×

× (𝑠/𝑀2)𝛼
[︁
𝐺′

𝑃 (𝛼𝑃 ) +
(︁
𝐿SD − 𝑖𝜋/2

)︁
𝐺𝑃 (𝛼𝑃 )

]︁
, (51)

where

𝐿SD ≡ ln (𝑠/𝑀2). (52)

The resulting double differential cross section for the
SD process is

𝑑2𝜎𝑃𝑃𝑃
SD

𝑑𝑡𝑑𝑀2
=

1

𝑀2

(︃
𝐺′2

𝑃 (𝛼𝑃 ) + 2𝐿SD𝐺𝑃 (𝛼𝑃 )𝐺
′
𝑃 (𝛼𝑃 )+
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+𝐺2
𝑃 (𝛼𝑃 )

(︂
𝐿2
SD +

𝜋2

4

)︂)︃
(𝑠/𝑀2)2𝛼𝑃 (𝑡)−2𝜎𝑃𝑝(𝑀2),(53)

where

𝜎𝑃𝑝(𝑀2) = 𝑔𝑃𝑃𝑃 𝑔𝑃𝑝𝑝(0)(𝑀
2𝑡)𝛼(0)−1. (54)

By using the proton relative momentum loss vari-
able 𝜉 = 𝑀2/𝑠, we get:

𝑑2𝜎𝑃𝑃𝑃
SD

𝑑𝑡𝑑𝜉
=

(︃
𝐺′2(𝛼) + 2𝐿SD𝐺(𝛼)𝐺′(𝛼) +𝐺2(𝛼)×

×
(︂
𝐿2
SD +

𝜋2

4

)︂)︃
𝜉1−2𝛼(𝑡)𝜎𝑃𝑝(𝑠𝜉), (55)

where

𝐿SD ≡ − ln 𝜉. (56)

Using Eq. (40), Eq. (41), and Eq. (53), one finds the
positions of the dip and the bump in the 𝑡 dependence
of the SD differential cross section:

𝑡SDdip =
1

𝛼′𝑏
ln

𝛾𝑏𝐿SD

𝑏+ 𝐿
, (57)

𝑡SDbump =
1

𝛼′𝑏
ln

𝛾𝑏(4𝐿2
SD + 𝜋2)

4(𝑏+ 𝐿SD)2 + 𝜋2
. (58)

We include also the contribution of the odderon
in the odderon-odderon-pomeron (OOP) triple ex-
change. In standard triple Regge formalism it takes
the form:

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
=

1

16𝜋2

1

𝑀2
𝑔2𝑂𝑝𝑝(𝑡)(𝑠/𝑀

2)2𝛼𝑂(𝑡)−2 ×

× 𝑔𝑂𝑂𝑃 (𝑡)𝑔𝑃𝑝𝑝(0)(𝑀
2)𝛿𝑂 . (59)

We use its dipole form (the derivation is the same as
in case of the dipole PPP contribution):

𝑑2𝜎𝑂𝑂𝑂
SD

𝑑𝑡𝑑𝑀2
=

1

𝑀2

(︃
𝐺′2

𝑂(𝛼𝑂) + 2𝐿SD𝐺𝑂(𝛼𝑂)𝐺
′
𝑂(𝛼𝑂)+

+𝐺2
𝑂(𝛼𝑂)

(︂
𝐿2
SD +

𝜋2

4

)︂)︃
(𝑠/𝑀2)2𝛼𝑂(𝑡)−2𝜎𝑃𝑝(𝑀2),(60)

where 𝜎𝑃𝑝 is given by Eq. (54), and the possible
difference between 𝑔𝑂𝑂𝑃 and 𝑔𝑃𝑃𝑃 is accounted by
𝑎𝑂. The dip and bump positions in the dipole OOP
contribution are given by Eq. (57) and Eq. (58).

a

b
Fig. 2. Predicted dip-bump structure in the 𝑡 distribution of
the 𝜉 integrated differential cross section of single diffraction
dissociation at

√
𝑠 = 546 GeV (a) with the different contribu-

tions shown and (b) without

The complete model for double differential cross
section of SD is a sum of three triple Regge contribu-
tion appended by a pion exchange contribution:

𝑑2𝜎SD

𝑑𝑡𝑑𝑀2
=

𝑑2𝜎𝑃𝑃𝑃
SD

𝑑𝑡𝑑𝑀2
+

𝑑2𝜎𝑂𝑂𝑃
SD

𝑑𝑡𝑑𝑀2
+

𝑑2𝜎𝑅𝑅𝑃
SD

𝑑𝑡𝑑𝑀2
+

𝑑2𝜎𝜋
SD

𝑑𝑡𝑑𝑀2
.

(61)

The parameters 𝑎 and 𝑏 were fitted to the data. The
parameter 𝛾 was fixed at values obtained in the anal-
ysis of the elastic scattering data. The intercepts of
the pomeron and the odderon trajectories are 1, 𝑖.𝑒.
𝛿𝑃 = 𝛿𝑂 = 0. The slopes of the pomeron and the
odderon trajecories are fixed at the values obtained
in the analysis of the elastic scattering data.

Interestingly, the DP Pomeron model of proton-
proton SD produces properly rising total integrated
cross sections with unit Pomeron intercept, i.e., with
𝛿 = 0.

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 11 845



L. Jenkovszky

The predicted structures in the differential cross
section at

√
𝑠 = 546 GeV, also integrated in 𝜉 are be-

low. Different contributions to the differential cross
section are also shown. One can see that both the
dipole PPP triple exchange and the dipole OOP triple
exchange generate a dip-bump structure. The experi-
mentally observable effect is expected from the OOP
contribution.

8. Summary

We predict a dip followed by a dump in proton single
diffractive dissociation around 𝑡 ≈ −4 GeV−2. The
prediction is sensitive to the poorly known slope of
SD. Further studies, both theoretical and experimen-
tal are needed.
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Л.Єнковський

МIНIМУМ (ПРОВАЛ) I МАКСИМУМ (ГОРБ)
У ОДИНАРНIЙ ДИФРАКЦIЙНIЙ ДИСОЦIАЦIЇ
ПРОТОНА НА LHC

Для одинарного дифракцiйного розподiлу при енергiях
прискорювача LHC передбачається iснування структури
провал-горб у квадратi функцiї розподiлу в залежностi
вiд переданого 4-iмпульса 𝑡 при значеннi 𝑡 ≈ −4 ГеВ2 у
процесах одинарної та подвiйної дифракцiйної дисоцiацiї
протона.

Ключ о в i с л о в а: структура провал-горб, квадрат пере-
даного чотириiмпульса, LHC, дифракцiйна дисоцiацiя про-
тона.
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