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SEMI-SYMMETRIC METRIC GRAVITY!

We will study a geometric extension of general relativity, which is based on a connection with
a special type of torsion. This connection satisfies that its torsion tensor is fully determined
by a vectorial degree of freedom, and it was first introduced by Friedmann and Schouten. We
explore its physical implications by presenting three cosmological models within the considered
geometric extension of GR, and compare the predictions of the models with those of ACDM and
the observational data of the Hubble function. Our results show that the geometry envisioned
by Friedmann could explain the observational data for the Hubble function without the need of

dark energy.
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1. Introduction
General Relativity [1] (GR) has been highly suc-

cessful in explaining numerous observed phenomena
such as the perihelion shift of Mercury, light de-
flection, Shapiro time delay, Nortvedt effect, grav-
itational waves [2, 3]. However, it is widely known
that the theory faces both observational and theoret-
ical challenges, including issues such as dark matter,
dark energy, the naturalness problem and the Hub-
ble tension. Therefore, over the past few decades, a
variety of extensions to GR, known as modified theo-
ries of gravity, have been developed to address these
issues. These extensions can be broadly categorized
into three groups:

1. Modifications where the action f(R) =
changed.

2. Modifications where the geometry is changed.

3. Modifications where both the geometry and ac-
tion are changed.

In this paper, we study an extension of general rela-
tivity, in which we modify the underlying connection,
hence passing to non-Riemannian geometry. In this
setting, an affine connection is characterized by three
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quantities: the Riemann, non-metricity and torsion
tensors. There are eight possibilites, as depicted in
Fig. 1.

The extension we propose is based on a special
type of Riemann—Cartan geometry, which we call
semi-symmetric metric geometry, where non-metri-
city vanishes, but torsion is non-zero and takes a
special form. This geometry was first introduced by
J. Schouten and Alexander Friedmann [4], the foun-
der of modern cosmology, in 1924 shortly before his
death. In the physics literature, this connection has
been widely ignored, despite its physical relevance:
Schouten noted in his book that if a person moves on
the Earth’s surface always facing a specific point, this
displacement is semi-symmetric and metric [5]. On
the other hand, the mathematical properties of semi-
symmetric metric connections have been thoroughly
studied [6, 7]. Therefore, the aim of this paper is to
explore the physical and cosmological implications of
the geometry envisioned by Friedmann.

2. Geometric Preliminaries

In this section, we provide the geometric preliminar-
ies needed to formulate semi-symmetric metric grav-
ity. To begin, we establish our conventions and define

1 This work is based on the results presented at the XII

Bolyai-Gauss—Lobachevskii (BGL-2024) Conference: Non-
Euclidean Geometry in Modern Physics and Mathematics.
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Fig. 1. The eight possible classes of geometries described by torsion, non-metricity and the Riemann

tensor
the torsion as
_ oT#
T“Vp =2r (o] (1)

For the semi-symmetric metric connection introduced
by Friedmann and Schouten, the torsion tensor can
be expressed as [4]

I 1
1%, = mpél; — m,6l for some one-form . (2)

Substituting this form of torsion into the general de-
composition

1
Fpup = ,y,uyp + §g>\ﬂ(_Q)\Vp + Qp)\u + Qup)\) -

1
= 30 (Tr + Tups = Ta) 3)

yields the Christoffels symbols
o =", = g + k. (4)

The Riemann tensor of the semi-symmetric metric
connection

et
Riem”, ,,

A A
=T Uo’rﬂ)\p -I uprﬂ)\a +8PFHVU —8UF“VP
(5)
can be decomposed using the Riemann tensor

o
Riem",,, of the Levi-Civita connection as [6]

o
iem” = Riem!  — i B
Riem", ,, = Riem",, ,, — S50l + Sy, 04

- gauSpAgAM + gpuso)\g/\ua (6)
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where the tensor S, is given by

o 1
S, =V, Ty — TyTo + ig,,gm\ﬂ')‘. (7)
The Ricci tensor and scalar can be straightforwardly
obtained and they read

o
Rvo‘ = Rl/a’ - 2SO'V - guas)\ﬁg)\ﬁa

5 (8)
R=R—6S5.9°.

3. Semi-Symmetric Metric Gravity

In this section, we outline the gravitational theory
built upon the previously introduced semi-symmetric
metric connection. First of all, we postulate that the
gravitational field equations are given by

1
R(ua) - ERgua = 87TT1/0'7 (9)

where R,, and R denote the Ricci curvature and
scalar of the semi-symmetric metric connection, re-
spectively, and 7T,, denotes the matter energy-
momentum tensor. Substituting the formulas pro-
vided in (8) into (9) we obtain

o 1 o
Rvo_§gVUR_SUu_Sya+2gauS>\ﬂg>\ﬁ =871Tys- (10)

To obtain a complete post-Riemannian expansion of
the Einstein equation, we also express S in terms of
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7 using (7). After some algebraic manipulations, we
readily find

1 o o
R,y — §guaR - Ve, —

o

Vune + 21,7, +

[e]
+ ng,erA + Guom’m, = 8110 (11)
As mentioned in the introduction, our goal is to ex-
plore cosmological implications of the semi-symmetric
metric connection. To this end, we evaluate the field
equations (11) for an isotropic, homogeneous and spa-
tially flat FLRW metric

ds® = —dt* + a*(t)6;;dx'da’. (12)
As matter we consider a perfect fluid described by the
energy-momentum tensor

T, = PUy Uy + p(uuua + guo’)~ (13)
The problem is taken into account in a comoving
frame, in which the four-velocity is given by

u, = (—1,0,0,0) < u” =(1,0,0,0). (14)
Finally, as we are in a highly symmetric case, we
choose

m, = (—w(t),0,0,0) < 7" = (w(t),0,0,0). (15)
Living with these assumptions, the Friedmann equa-
tions take the form

3H? = 8mp — 3w’ + 6Hw, (16)

2H + 3H? = —87p + 4Hw — w? + 2, (17)
where we have denoted H = a/a.

It is easily seen that the Friedmann equations of
GR are recovered in the limit w — 0. Hence, we in-
terpret the additional terms as an effective geometric
type dark energy

1 (6Hw - 3w2),
8
(18)

1 .
Peft = - (4Hw —w? +2w).

Peff =

We can, therefore, rewrite the Friedmann equations
as

3H” = 87(p + pett),
2H + 3H? = —87(p + pesr).
486

(19)
(20)

Hence, the continuity equation takes the form

P+ 3H (p+ p) + pet + 3H (per + perr) = 0. (21)
An equivalent form is also given by
3H (p+p) + S[d (2Hw — w?) +
8 | dt
+H (2Hw — 2w* — 2@)} =0. (22)

To simplify the formalism, we introduce a set of
dimensionless variables, according to

H= It[()h,7 T = Hot, w = ‘E[()Q7
3H? H? 23
,_3H3 - 3HE, (23)
8T 8T

In these notations, the Friedmann equations can be
rewritten as

h2=r+ Toff (24)
dh )
2— +3h? = —3(P + P.g), (25)
dr
with
reg = 2hQ — Q% P.g = 1 4hQ — 0% + 2@ ;
3 dr
(26)

where peg = (3HZ /87T, and peg = (3HZ /8T) Pegr.
To directly compare with observations, we also in-

troduce the redshift variable

14+z=1/a,

d d
which implies = —(1+2)h(z)—.
T

dz
(27)

The evolution equations in the redshift representation
read

h2(2) = r(z) + 2h(2)Q(2) — Q2(2),
dh(z)

2(1 + 2)h(z) —+ 3h%(2) = —3P(2) + (28)
+4h(2)Q(z) — Q%(2) — 2(1 + z)h(z)%

4. Cosmological Models

In this section, we construct three cosmological mod-
els by imposing equations of state between the mat-
ter pressure and matter energy density, and the ef-
fective pressure and effective matter density, respec-
tively. We then compare our findings with the stan-
dard ACDM model. In what follows, we will consider,
for matter, a pressureless dust, that is, we set P = 0.
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4.1. Analytical cosmological model

Given the assumption P = 0, we only have to consider
equations of state which relate the effective compo-
nents. For the first model, we assume that both the
effective pressure and effective density are constants,
but they differ. Mathematically, this can be formu-
lated as

2
3w(2H —w) = A, 4Hw —w? + 20 = gkA, (29)
where k and A are non-zero constants and k is as-
sumed to be positive. By eliminating H from the
equations of state, we obtain, for w, the differential
equation

A
20 +w? +2(1—-k)= =0,

3 (30)

which admits an analytical solution

2(k — 1)A (k— DA

tanh [ 7

where t( is an arbitrary constant of integration. Then,
using this expression, we obtain for the Hubble func-

w(t) = (t— to)]’ (31)

tion
A DA -t)] |
H(t) = o) tanh [ 7 ]
o | V (k= 1At —to)
X {coth [ NG +2(k — 1)} (32)

The matter density obtained from the first Friedmann
equation p = 3H? — A takes the form

8mp(t) = 8<]€A_1){coth l @ (t — to)] -

2
— DA

—2(k — 1) tanh [ % (t— toi } (33)
Similarly, the pressure can be expressed as
8 (t)—# (4k — T)csch? x
P o4k — 1) e

— 1A
X [ % (t —to)| 4 4(k — 1)?sech® x

— 1A
xl %(t—to) +4k2—4k—3}. (34)
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The scale factor of this cosmological model is given

by
a(t) = agsinh2*~Y [ w (t— to)l X
x coshV® [ @ (t— to)]. (35)

4.2. Cosmological model with linear
equation of state for dark energy

For the second cosmological model, we assume that
the dark components satisfy a linear equation of state

P (2) = —o(2)reg(2) + A, (36)

where \ is a constant and o(z) is given by the CPL

parametrization
z

142

In this case, the evolution equations of the Universe
are given by

—2(1+ z)h(z)d

o(z) =04+ 00 (37)

Z(Z) 4 3h%(2) = 3+

+30(2) [2h(2)Q(z) — Q*(2)], (38)
—2(1+ 2)h(z) d%(j) = 2[30(2) — 2| h(2)Q(z) +
+[1 = 30(2)] Q%(2) + 3\ (39)

The system of equations (38) and (39) has to be
solved numerically with the initial conditions h(0) =
= 1, and Q(0) = Qg. Nevertheless, the closure re-
lation determines the initial condition €2y, given the
present day matter density through the formula

QO = 1 + \ 7’(0)

In the following, we will numerically integrate dif-
ferential equations (38) and (39) and compare the pre-
dictions of the theory with the ACDM framework, in
which the Hubble function is given by

[
H = Hj ?‘i‘QA:HO\/Qm(l"‘Z)g"'QA, (41)

where Q,, = Qp + Qpwm, with Q, = Pb/pch QpMm =
= ppM/Per, and Qp = A/per, where pe; is the critical
density of the Universe. The deceleration parameter
is given by the relation

_ 3(1+ 2)3Q,
a(2) = 3 [ + (L + 2)3Q,]

(40)

~1. (42)
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Fig. 2. Variations as a function of the redshift z of the dimensionless Hubble function (left panel) and of the difference between
the dimensionless Hubble function and of the ACDM (right panel). For the linear equation of state, the parameters are given by

A =0.79, r(0) = 0.311, o9 = —0.10 and different values of o4
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Fig. 8. Variations as a function of the redshift z of the deceleration parameter g(z) (left panel) and of the torsion vector Q(z)
(right panel) for the linear equation of state model with parameters A = 0.79, r(0) = 0.311, o9 = —0.10 and different values of o4
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Fig. 4. Behavior of the function Om(z) for Model II, for
A =0.79, r(0) = 0.311, 0p = —0.10, and different values of o

As for the parametrization, we use the numerical val-
ues Q,,, = 0.3075, Hy = 67.1, Q5 = 0.6911 [8]. The
data is taken from [9].
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The variations of the Hubble function and of the
difference between the present model’s Hubble func-
tion and the one of ACDM are depicted in Fig. 2. It
can be seen that, for the considered range of param-
eters, the linear equation of state model can repro-
duce well both the observational data and the pre-
dictions of the standard ACDM model. However, at
higher redshifts z > 2, the predictions of the present
model differ from the ACDM and depend on the ini-
tial conditions.

The variations of the deceleration parameter ¢(z)
and torsion vector §(z) are depicted in Fig. 3

As it can be seen from Fig. 3, in the interval
0 < z < 0.5, there seem to be small deviations, our
model predicting a slightly smaller deceleration pa-
rameter than the standard ACDM paradigm. From
the same figure we deduce that the torsion is an in-
creasing function of the redshift and takes positive

ISSN 2071-0194. Ukr. J. Phys. 2024. Vol. 69, No. 7
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Fig. 6. Variations as a function of the redshift z of the deceleration parameter g(z) and of the torsion vector (z) for the
polytropic model with K = —2 and several distinct initial values €(0)

values during the cosmological evolution. The param-
eter o, slightly changes Q(z) only for larger values
z > 2.

The behavior of the function Om(z) is represented
in Fig. 4. The Om(z) diagnostic differs from the
ACDM drastically, indicating a possibility of transi-
tion between phantom-like and quintessence-like evo-
lutions.

4.3. Cosmological model with polytropic
equation of state for dark energy

As a third cosmological model, we consider a poly-
tropic equation of state

Pz = KrZs, (43)

where K is a constant. In this case, the cosmological

evolution of the Universe is governed by

dh(z)
dz

ISSN 2071-019/4. Ukr. J. Phys. 2024. Vol. 69, No. 7

—2(14 2)h(z) + 3h%(2) — 4h(2)Q(2) +

dQ(z)

+Q%(2) +2(1 + 2)h(2) o =0 (44)
% Ah(2)Q(2) — Q2(2) — 2(1 + z)h(z)% +
+ K [21(2)9(2) — 2%(2)]° = 0. (45)

The above system has to be integrated with the
initial conditions h(0) = 1 and Q(0) = . After in-
tegration, we obtain the matter energy density from
the closure relation

r(z) = h2(2) — 2h(2)Q(z) + Q*(2). (46)

The variations as the function of the redshift z of
the dimensionless Hubble function h(z) and the differ-
ence dH (z) are represented for K = —2 and different
values of ©(0) in Fig. 5.

As can be seen from Fig. 5, the polytropic model
describes very well both the observational data of the
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Fig. 7. Behavior of the function Om(z) for the polytropic
model with K = —2 and different values of (0)
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Fig. 8. Behavior of the matter density r(z) as a function of the
redshift z for the polytropic model with K = —2 and different
values of (0)

Hubble function and the ACDM model. However, at
redshifts z > 1.5, some small deviations from ACDM
appear.

The evolution of the deceleration parameter ¢(z)
and of the torsion vector §(z) are depicted in Fig. 6.

From Fig. 6 we can see that small deviations ap-
pear in the redshift range 0 < z < 1.5 in the case of
deceleration parameter, our model predicting slightly
smaller values. From z > 1.5, the predictions of our
model and the ACDM basically coincide. The tor-
sion vector is a decreasing function of the redshift and
takes positive values on the interval 0 < z < 3.5. The
initial value chosen does not affect the high-redshift
behaviour of the torsion vector.

The Om(z) diagnostic function of the polytropic
model is shown on Fig. 7. This differs significantly
from the ACDM Om(z) function at lower redshifts,
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as it is a monotonically increasing functions instead
of a constant. However, at large redshifts, it asymp-
totically converges to a constant value.

The present day matter density of the polytropic
model can be seen in Fig. 8. The predictions of this
model and the ACDM paradigm basically coincide up
to z >~ 1.

5. Summary and Conclusions

In the present paper, we have investigated a geomet-
ric extension of general relativity, by including the
torsion of a special type, first introduced by Fried-
mann in 1924. We have written down the Einstein
field equations in a post-Riemannian expansion, high-
lighting the effects of torsion. To see the physical rel-
evance of the torsion terms, we considered three cos-
mological models, where the effective dark energy and
pressure were related by three different equations of
state. We have qualitatively shown that our model
is able to reproduce the predictions of the standard
ACDM framework, and to explain the observational
data, without the need of the dark energy.

Nevertheless, it is important to mention that our
analysis is qualitative in nature, and a detailed com-
parison with larger datasets including an MCMC
analysis to constrain the parameters of the models
are needed for quantitative predictions.

Further prospects of the current work include, but
are not limited to:

1. Studying spherically symmetric solutions of the
field equations, either in vacuum, or in the presence of
matter. Either black hole models or stellar structures
could be explored in semi-symmetric metric gravity.

2. Finding the non-relativistic limit of our field
equations and considering if the torsion could account
for the galaxy rotation curves, which is usually at-
tributed to dark matter.

Altogether, we conclude the work with the idea of
that the Friedmann’s envisioned geometry could be a
plausible alternative of standard general relativity, in
which dark energy has a purely geometric origin.

The work of L.Cs. is supported by Collegium Talen-
tum Hungary and the StarUBB research scholarship.
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JI. Qinnoe, T. Xapxo
HAIIIBCUMETPUYHA METPUYHA I PABITALIISA

VY miit po60oTi MH BUBYAEMO M€OMETPHUYHE PO3IINPEHHS 3arajib-
HOI Teopil BiTHOCHOCTI, sike 6a3yeTbCsl HA 3B’SI3KY 3 OCOOJIUBUM
TunoM Kpydenus. llelt 38’5130k mosisirae y Tomy, 1o #Oro TeH-
30p KPY4YEHHsI IOBHICTIO BU3HAYAETHCH BEKTOPHUM CTYIIEHEM
BisibHOCTI, 1 BiH 6yB Buepiie Befenuii @pigmanom i Cxoyre-
HOM. Mu jocijizKyeMo ioro (bi3udHi HACIIKH, TPEJICTABIISIIO-
YU TPU KOCMOJIOTiYUHI MOEJi B paMKaX PO3IVISHYTOI'O IeoMe-
TPUYHOTO PO3IIMPEHHS 3araJibHOl Teopil BigHOCHOCTI, i MoOpiB-
HIOEMO TIPOTHO3M Mmojeneit 3 nependbadenuavu AC D M-moneni
(3 XOJIOZAHOI0 TEMHOIO MATEPIEIO 1 TEMHOIO €HEPTIEI0), & TAKOK
IAHUMU CIIOCTepexxeHb st GpyHKIil Xabosa. Hami pesynbra-
THU IOKa3yIOTh, [0 TeOMeTpis, nepedoadena PpigmaHoMm, MOxe
MOSICHUTH JIaHi ClIoCTepeXkeHb Jist (pyHKIT Xabbsia 6e3 morpe-
6u B TeMHill eHepril.

Karwwoei caoea: KocMosoriuai Mozesi, HamiBCHMeTpUIHA
MeTpUYHa I'paBiTallis, 3arajbHa TeOpisi BiJHOCHOCTi, TEH30p
KpydueHHs1, GyHKIisa Xaboa.
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