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SEMI-SYMMETRIC METRIC GRAVITY 1

We will study a geometric extension of general relativity, which is based on a connection with
a special type of torsion. This connection satisfies that its torsion tensor is fully determined
by a vectorial degree of freedom, and it was first introduced by Friedmann and Schouten. We
explore its physical implications by presenting three cosmological models within the considered
geometric extension of GR, and compare the predictions of the models with those of ΛCDM and
the observational data of the Hubble function. Our results show that the geometry envisioned
by Friedmann could explain the observational data for the Hubble function without the need of
dark energy.
K e yw o r d s: cosmological models, semi-symmetric metric gravity, general relativity, torsion
tensor, Hubble function.

1. Introduction

General Relativity [1] (GR) has been highly suc-
cessful in explaining numerous observed phenomena
such as the perihelion shift of Mercury, light de-
flection, Shapiro time delay, Nortvedt effect, grav-
itational waves [2, 3]. However, it is widely known
that the theory faces both observational and theoret-
ical challenges, including issues such as dark matter,
dark energy, the naturalness problem and the Hub-
ble tension. Therefore, over the past few decades, a
variety of extensions to GR, known as modified theo-
ries of gravity, have been developed to address these
issues. These extensions can be broadly categorized
into three groups:

1. Modifications where the action 𝑓(𝑅) = 𝑅 is
changed.

2. Modifications where the geometry is changed.
3. Modifications where both the geometry and ac-

tion are changed.
In this paper, we study an extension of general rela-

tivity, in which we modify the underlying connection,
hence passing to non-Riemannian geometry. In this
setting, an affine connection is characterized by three
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quantities: the Riemann, non-metricity and torsion
tensors. There are eight possibilites, as depicted in
Fig. 1.

The extension we propose is based on a special
type of Riemann–Cartan geometry, which we call
semi-symmetric metric geometry, where non-metri-
city vanishes, but torsion is non-zero and takes a
special form. This geometry was first introduced by
J. Schouten and Alexander Friedmann [4], the foun-
der of modern cosmology, in 1924 shortly before his
death. In the physics literature, this connection has
been widely ignored, despite its physical relevance:
Schouten noted in his book that if a person moves on
the Earth’s surface always facing a specific point, this
displacement is semi-symmetric and metric [5]. On
the other hand, the mathematical properties of semi-
symmetric metric connections have been thoroughly
studied [6, 7]. Therefore, the aim of this paper is to
explore the physical and cosmological implications of
the geometry envisioned by Friedmann.

2. Geometric Preliminaries

In this section, we provide the geometric preliminar-
ies needed to formulate semi-symmetric metric grav-
ity. To begin, we establish our conventions and define

1 This work is based on the results presented at the XII
Bolyai–Gauss–Lobachevskii (BGL-2024) Conference: Non-
Euclidean Geometry in Modern Physics and Mathematics.
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Fig. 1. The eight possible classes of geometries described by torsion, non-metricity and the Riemann
tensor

the torsion as

𝑇𝜇
𝜈𝜌 = 2Γ𝜇

[𝜌𝜈]. (1)

For the semi-symmetric metric connection introduced
by Friedmann and Schouten, the torsion tensor can
be expressed as [4]

𝑇𝜇
𝜈𝜌 = 𝜋𝜌𝛿

𝜇
𝜈 − 𝜋𝜈𝛿

𝜇
𝜌 for some one-form 𝜋𝜌. (2)

Substituting this form of torsion into the general de-
composition

Γ𝜇
𝜈𝜌 = 𝛾𝜇

𝜈𝜌 +
1

2
𝑔𝜆𝜇(−𝑄𝜆𝜈𝜌 +𝑄𝜌𝜆𝜈 +𝑄𝜈𝜌𝜆)−

− 1

2
𝑔𝜆𝜇(𝑇𝜌𝜈𝜆 + 𝑇𝜈𝜌𝜆 − 𝑇𝜆𝜌𝜈) (3)

yields the Christoffels symbols

Γ𝜇
𝜈𝜌 = 𝛾𝜇

𝜈𝜌 − 𝜋𝜇𝑔𝜌𝜈 + 𝜋𝜈𝛿
𝜇
𝜌 . (4)

The Riemann tensor of the semi-symmetric metric
connection

𝑅𝑖𝑒𝑚𝜇
𝜈𝜌𝜎 = Γ𝜆

𝜈𝜎Γ
𝜇
𝜆𝜌−Γ𝜆

𝜈𝜌Γ
𝜇
𝜆𝜎+𝜕𝜌Γ

𝜇
𝜈𝜎−𝜕𝜎Γ

𝜇
𝜈𝜌

(5)

can be decomposed using the Riemann tensor
∘

𝑅𝑖𝑒𝑚𝜇
𝜈𝜌𝜎 of the Levi-Civita connection as [6]

𝑅𝑖𝑒𝑚𝜇
𝜈𝜌𝜎 =

∘
𝑅𝑖𝑒𝑚𝜇

𝜈𝜌𝜎 − 𝑆𝜎𝜈𝛿
𝜇
𝜌 + 𝑆𝜌𝜈𝛿

𝜇
𝜎 −

− 𝑔𝜎𝜈𝑆𝜌𝜆𝑔
𝜆𝜇 + 𝑔𝜌𝜈𝑆𝜎𝜆𝑔

𝜆𝜇, (6)

where the tensor 𝑆𝜈𝜎 is given by

𝑆𝜈𝜎 =
∘
∇𝜈𝜋𝜎 − 𝜋𝜈𝜋𝜎 +

1

2
𝑔𝜈𝜎𝜋𝜆𝜋

𝜆. (7)

The Ricci tensor and scalar can be straightforwardly
obtained and they read

𝑅𝜈𝜎 =
∘
𝑅𝜈𝜎 − 2𝑆𝜎𝜈 − 𝑔𝜈𝜎𝑆𝜆𝛽𝑔

𝜆𝛽 ,

𝑅 =
∘
𝑅− 6𝑆𝛽𝜆𝑔

𝛽𝜆.
(8)

3. Semi-Symmetric Metric Gravity

In this section, we outline the gravitational theory
built upon the previously introduced semi-symmetric
metric connection. First of all, we postulate that the
gravitational field equations are given by

𝑅(𝜈𝜎) −
1

2
𝑅𝑔𝜈𝜎 = 8𝜋𝑇𝜈𝜎, (9)

where 𝑅𝜈𝜎 and 𝑅 denote the Ricci curvature and
scalar of the semi-symmetric metric connection, re-
spectively, and 𝑇𝜈𝜎 denotes the matter energy-
momentum tensor. Substituting the formulas pro-
vided in (8) into (9) we obtain

∘
𝑅𝜈𝜎−

1

2
𝑔𝜈𝜎

∘
𝑅−𝑆𝜎𝜈−𝑆𝜈𝜎+2𝑔𝜎𝜈𝑆𝜆𝛽𝑔

𝜆𝛽 = 8𝜋𝑇𝜈𝜎. (10)

To obtain a complete post-Riemannian expansion of
the Einstein equation, we also express 𝑆 in terms of
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𝜋 using (7). After some algebraic manipulations, we
readily find
∘
𝑅𝜈𝜎 − 1

2
𝑔𝜈𝜎

∘
𝑅−

∘
∇𝜎𝜋𝜈 −

∘
∇𝜈𝜋𝜎 + 2𝜋𝜎𝜋𝜈 +

+2𝑔𝜎𝜈
∘
∇𝜆𝜋

𝜆 + 𝑔𝜈𝜎𝜋
𝜌𝜋𝜌 = 8𝜋𝑇𝜈𝜎. (11)

As mentioned in the introduction, our goal is to ex-
plore cosmological implications of the semi-symmetric
metric connection. To this end, we evaluate the field
equations (11) for an isotropic, homogeneous and spa-
tially flat FLRW metric

𝑑𝑠2 = −𝑑𝑡2 + 𝑎2(𝑡)𝛿𝑖𝑗𝑑𝑥
𝑖𝑑𝑥𝑗 . (12)

As matter we consider a perfect fluid described by the
energy-momentum tensor

𝑇𝜈𝜎 = 𝜌𝑢𝜈𝑢𝜎 + 𝑝(𝑢𝜈𝑢𝜎 + 𝑔𝜈𝜎). (13)

The problem is taken into account in a comoving
frame, in which the four-velocity is given by

𝑢𝜈 = (−1, 0, 0, 0) ⇐⇒ 𝑢𝜈 = (1, 0, 0, 0). (14)

Finally, as we are in a highly symmetric case, we
choose

𝜋𝜈 = (−𝜔(𝑡), 0, 0, 0) ⇐⇒ 𝜋𝜈 = (𝜔(𝑡), 0, 0, 0). (15)

Living with these assumptions, the Friedmann equa-
tions take the form

3𝐻2 = 8𝜋𝜌− 3𝜔2 + 6𝐻𝜔, (16)

2𝐻̇ + 3𝐻2 = −8𝜋𝑝+ 4𝐻𝜔 − 𝜔2 + 2𝜔̇, (17)

where we have denoted 𝐻 = 𝑎̇/𝑎.
It is easily seen that the Friedmann equations of

GR are recovered in the limit 𝜔 → 0. Hence, we in-
terpret the additional terms as an effective geometric
type dark energy

𝜌eff =
1

8𝜋

(︀
6𝐻𝜔 − 3𝜔2

)︀
,

𝑝eff = − 1

8𝜋

(︀
4𝐻𝜔 − 𝜔2 + 2𝜔̇

)︀
.

(18)

We can, therefore, rewrite the Friedmann equations
as

3𝐻2 = 8𝜋(𝜌+ 𝜌eff), (19)

2𝐻̇ + 3𝐻2 = −8𝜋(𝑝+ 𝑝eff). (20)

Hence, the continuity equation takes the form

𝜌̇+ 3𝐻 (𝜌+ 𝑝) + 𝜌̇eff + 3𝐻 (𝜌eff + 𝑝eff) = 0. (21)

An equivalent form is also given by

3𝐻 (𝜌+ 𝑝) +
3

8𝜋

[︂
𝑑

𝑑𝑡

(︀
2𝐻𝜔 − 𝜔2

)︀
+

+𝐻
(︀
2𝐻𝜔 − 2𝜔2 − 2𝜔̇

)︀]︂
= 0. (22)

To simplify the formalism, we introduce a set of
dimensionless variables, according to

𝐻 = 𝐻0ℎ, 𝜏 = 𝐻0𝑡, 𝜔 = 𝐻0Ω,

𝜌 =
3𝐻2

0

8𝜋
𝑟, 𝑝 =

3𝐻2
0

8𝜋
𝑃.

(23)

In these notations, the Friedmann equations can be
rewritten as

ℎ2 = 𝑟 + 𝑟eff , (24)

2
𝑑ℎ

𝑑𝜏
+ 3ℎ2 = −3(𝑃 + 𝑃eff), (25)

with

𝑟eff = 2ℎΩ− Ω2, 𝑃eff = −1

3

(︂
4ℎΩ− Ω2 + 2

𝑑Ω

𝑑𝜏

)︂
,

(26)

where 𝜌eff = (3𝐻2
0/8𝜋)𝑟eff , and 𝑝eff = (3𝐻2

0/8𝜋)𝑃eff .
To directly compare with observations, we also in-

troduce the redshift variable

1+ 𝑧 = 1/𝑎, which implies
𝑑

𝑑𝜏
= −(1+ 𝑧)ℎ(𝑧)

𝑑

𝑑𝑧
.

(27)

The evolution equations in the redshift representation
read
ℎ2(𝑧) = 𝑟(𝑧) + 2ℎ(𝑧)Ω(𝑧)− Ω2(𝑧),

2(1 + 𝑧)ℎ(𝑧)
𝑑ℎ(𝑧)

𝑑𝑧
+ 3ℎ2(𝑧) = −3𝑃 (𝑧)+

+4ℎ(𝑧)Ω(𝑧)− Ω2(𝑧)− 2(1 + 𝑧)ℎ(𝑧)
𝑑Ω

𝑑𝑧
.

(28)

4. Cosmological Models

In this section, we construct three cosmological mod-
els by imposing equations of state between the mat-
ter pressure and matter energy density, and the ef-
fective pressure and effective matter density, respec-
tively. We then compare our findings with the stan-
dard ΛCDM model. In what follows, we will consider,
for matter, a pressureless dust, that is, we set 𝑃 = 0.
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4.1. Analytical cosmological model

Given the assumption 𝑃 = 0, we only have to consider
equations of state which relate the effective compo-
nents. For the first model, we assume that both the
effective pressure and effective density are constants,
but they differ. Mathematically, this can be formu-
lated as

3𝜔 (2𝐻 − 𝜔) = Λ, 4𝐻𝜔 − 𝜔2 + 2𝜔̇ =
2

3
𝑘Λ, (29)

where 𝑘 and Λ are non-zero constants and 𝑘 is as-
sumed to be positive. By eliminating 𝐻 from the
equations of state, we obtain, for 𝜔, the differential
equation

2𝜔̇ + 𝜔2 + 2(1− 𝑘)
Λ

3
= 0, (30)

which admits an analytical solution

𝜔(𝑡) =

√︂
2(𝑘 − 1)Λ

3
tanh

[︃√︀
(𝑘 − 1)Λ√

6
(𝑡− 𝑡0)

]︃
, (31)

where 𝑡0 is an arbitrary constant of integration. Then,
using this expression, we obtain for the Hubble func-
tion

𝐻(𝑡) =

√
Λ

2
√︀
6(𝑘 − 1)

tanh

[︃√︀
(𝑘 − 1)Λ (𝑡− 𝑡0)√

6

]︃
×

×

{︃
coth2

[︃√︀
(𝑘 − 1)Λ (𝑡− 𝑡0)√

6

]︃
+ 2(𝑘 − 1)

}︃
. (32)

The matter density obtained from the first Friedmann
equation 𝜌 = 3𝐻2 − Λ takes the form

8𝜋𝜌(𝑡) =
Λ

8(𝑘 − 1)

{︃
coth

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃
−

− 2(𝑘 − 1) tanh

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃}︃2
. (33)

Similarly, the pressure can be expressed as

8𝜋𝑝(𝑡) =
Λ

24(𝑘 − 1)

{︃
(4𝑘 − 7)csch2 ×

×

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃
+ 4(𝑘 − 1)2sech2 ×

×

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃
+ 4𝑘2 − 4𝑘 − 3

}︃
. (34)

The scale factor of this cosmological model is given
by

𝑎(𝑡) = 𝑎0 sinh
2(𝑘−1)

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃
×

× cosh
√
6

[︃√︂
(𝑘 − 1)Λ

6
(𝑡− 𝑡0)

]︃
. (35)

4.2. Cosmological model with linear
equation of state for dark energy

For the second cosmological model, we assume that
the dark components satisfy a linear equation of state

𝑃eff(𝑧) = −𝜎(𝑧)𝑟eff(𝑧) + 𝜆, (36)

where 𝜆 is a constant and 𝜎(𝑧) is given by the CPL
parametrization

𝜎(𝑧) = 𝜎𝑎 + 𝜎0
𝑧

1 + 𝑧
. (37)

In this case, the evolution equations of the Universe
are given by

−2(1 + 𝑧)ℎ(𝑧)
𝑑ℎ(𝑧)

𝑑𝑧
+ 3ℎ2(𝑧) = 3𝜆+

+3𝜎(𝑧)
[︀
2ℎ(𝑧)Ω(𝑧)− Ω2(𝑧)

]︀
, (38)

−2(1 + 𝑧)ℎ(𝑧)
𝑑Ω(𝑧)

𝑑𝑧
= 2 [3𝜎(𝑧)− 2]ℎ(𝑧)Ω(𝑧)+

+ [1− 3𝜎(𝑧)] Ω2(𝑧) + 3𝜆. (39)

The system of equations (38) and (39) has to be
solved numerically with the initial conditions ℎ(0) =
= 1, and Ω(0) = Ω0. Nevertheless, the closure re-
lation determines the initial condition Ω0, given the
present day matter density through the formula

Ω0 = 1 +
√︀

𝑟(0). (40)

In the following, we will numerically integrate dif-
ferential equations (38) and (39) and compare the pre-
dictions of the theory with the ΛCDM framework, in
which the Hubble function is given by

𝐻 = 𝐻0

√︂
Ω𝑚

𝑎3
+ΩΛ = 𝐻0

√︀
Ω𝑚(1 + 𝑧)3 +ΩΛ, (41)

where Ω𝑚 = Ω𝑏 + ΩDM, with Ω𝑏 = 𝜌𝑏/𝜌cr, ΩDM =
= 𝜌DM/𝜌cr, and ΩΛ = Λ/𝜌cr, where 𝜌cr is the critical
density of the Universe. The deceleration parameter
is given by the relation

𝑞(𝑧) =
3(1 + 𝑧)3Ω𝑚

2 [ΩΛ + (1 + 𝑧)3Ω𝑚]
− 1. (42)
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Fig. 2. Variations as a function of the redshift 𝑧 of the dimensionless Hubble function (left panel) and of the difference between
the dimensionless Hubble function and of the ΛCDM (right panel). For the linear equation of state, the parameters are given by
𝜆 = 0.79, 𝑟(0) = 0.311, 𝜎0 = −0.10 and different values of 𝜎𝑎

Fig. 3. Variations as a function of the redshift 𝑧 of the deceleration parameter 𝑞(𝑧) (left panel) and of the torsion vector Ω(𝑧)

(right panel) for the linear equation of state model with parameters 𝜆 = 0.79, 𝑟(0) = 0.311, 𝜎0 = −0.10 and different values of 𝜎𝑎

Fig. 4. Behavior of the function 𝑂𝑚(𝑧) for Model II, for
𝜆 = 0.79, 𝑟(0) = 0.311, 𝜎0 = −0.10, and different values of 𝜎𝑎

As for the parametrization, we use the numerical val-
ues Ω𝑚 = 0.3075, 𝐻0 = 67.1, ΩΛ = 0.6911 [8]. The
data is taken from [9].

The variations of the Hubble function and of the
difference between the present model’s Hubble func-
tion and the one of ΛCDM are depicted in Fig. 2. It
can be seen that, for the considered range of param-
eters, the linear equation of state model can repro-
duce well both the observational data and the pre-
dictions of the standard ΛCDM model. However, at
higher redshifts 𝑧 > 2, the predictions of the present
model differ from the ΛCDM and depend on the ini-
tial conditions.

The variations of the deceleration parameter 𝑞(𝑧)
and torsion vector Ω(𝑧) are depicted in Fig. 3

As it can be seen from Fig. 3, in the interval
0 < 𝑧 < 0.5, there seem to be small deviations, our
model predicting a slightly smaller deceleration pa-
rameter than the standard ΛCDM paradigm. From
the same figure we deduce that the torsion is an in-
creasing function of the redshift and takes positive
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Fig. 5. Variations of the dimensionless Hubble function ℎ(𝑧)(left panel), and of the difference 𝛿ℎ(𝑧) (right panel) for the
polytropic model with 𝐾 = −2 and several distinct initial conditions Ω0

Fig. 6. Variations as a function of the redshift 𝑧 of the deceleration parameter 𝑞(𝑧) and of the torsion vector Ω(𝑧) for the
polytropic model with 𝐾 = −2 and several distinct initial values Ω(0)

values during the cosmological evolution. The param-
eter 𝜎𝑎 slightly changes Ω(𝑧) only for larger values
𝑧 > 2.

The behavior of the function 𝑂𝑚(𝑧) is represented
in Fig. 4. The 𝑂𝑚(𝑧) diagnostic differs from the
ΛCDM drastically, indicating a possibility of transi-
tion between phantom-like and quintessence-like evo-
lutions.
4.3. Cosmological model with polytropic
equation of state for dark energy

As a third cosmological model, we consider a poly-
tropic equation of state
𝑃eff = 𝐾𝑟2eff , (43)

where 𝐾 is a constant. In this case, the cosmological
evolution of the Universe is governed by

−2(1 + 𝑧)ℎ(𝑧)
𝑑ℎ(𝑧)

𝑑𝑧
+ 3ℎ2(𝑧)− 4ℎ(𝑧)Ω(𝑧)+

+Ω2(𝑧) + 2(1 + 𝑧)ℎ(𝑧)
𝑑Ω(𝑧)

𝑑𝑧
= 0, (44)

1

3

[︂
4ℎ(𝑧)Ω(𝑧)− Ω2(𝑧)− 2(1 + 𝑧)ℎ(𝑧)

𝑑Ω

𝑑𝑧

]︂
+

+𝐾
[︀
2ℎ(𝑧)Ω(𝑧)− Ω2(𝑧)

]︀2
= 0. (45)

The above system has to be integrated with the
initial conditions ℎ(0) = 1 and Ω(0) = Ω0. After in-
tegration, we obtain the matter energy density from
the closure relation

𝑟(𝑧) = ℎ2(𝑧)− 2ℎ(𝑧)Ω(𝑧) + Ω2(𝑧). (46)

The variations as the function of the redshift 𝑧 of
the dimensionless Hubble function ℎ(𝑧) and the differ-
ence 𝛿𝐻(𝑧) are represented for 𝐾 = −2 and different
values of Ω(0) in Fig. 5.

As can be seen from Fig. 5, the polytropic model
describes very well both the observational data of the
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Fig. 7. Behavior of the function 𝑂𝑚(𝑧) for the polytropic
model with 𝐾 = −2 and different values of Ω(0)

Fig. 8. Behavior of the matter density 𝑟(𝑧) as a function of the
redshift 𝑧 for the polytropic model with 𝐾 = −2 and different
values of Ω(0)

Hubble function and the ΛCDM model. However, at
redshifts 𝑧 > 1.5, some small deviations from ΛCDM
appear.

The evolution of the deceleration parameter 𝑞(𝑧)
and of the torsion vector Ω(𝑧) are depicted in Fig. 6.

From Fig. 6 we can see that small deviations ap-
pear in the redshift range 0 < 𝑧 < 1.5 in the case of
deceleration parameter, our model predicting slightly
smaller values. From 𝑧 > 1.5, the predictions of our
model and the ΛCDM basically coincide. The tor-
sion vector is a decreasing function of the redshift and
takes positive values on the interval 0 < 𝑧 < 3.5. The
initial value chosen does not affect the high-redshift
behaviour of the torsion vector.

The 𝑂𝑚(𝑧) diagnostic function of the polytropic
model is shown on Fig. 7. This differs significantly
from the ΛCDM 𝑂𝑚(𝑧) function at lower redshifts,

as it is a monotonically increasing functions instead
of a constant. However, at large redshifts, it asymp-
totically converges to a constant value.

The present day matter density of the polytropic
model can be seen in Fig. 8. The predictions of this
model and the ΛCDM paradigm basically coincide up
to 𝑧 ≃ 1.

5. Summary and Conclusions

In the present paper, we have investigated a geomet-
ric extension of general relativity, by including the
torsion of a special type, first introduced by Fried-
mann in 1924. We have written down the Einstein
field equations in a post-Riemannian expansion, high-
lighting the effects of torsion. To see the physical rel-
evance of the torsion terms, we considered three cos-
mological models, where the effective dark energy and
pressure were related by three different equations of
state. We have qualitatively shown that our model
is able to reproduce the predictions of the standard
ΛCDM framework, and to explain the observational
data, without the need of the dark energy.

Nevertheless, it is important to mention that our
analysis is qualitative in nature, and a detailed com-
parison with larger datasets including an MCMC
analysis to constrain the parameters of the models
are needed for quantitative predictions.

Further prospects of the current work include, but
are not limited to:

1. Studying spherically symmetric solutions of the
field equations, either in vacuum, or in the presence of
matter. Either black hole models or stellar structures
could be explored in semi-symmetric metric gravity.

2. Finding the non-relativistic limit of our field
equations and considering if the torsion could account
for the galaxy rotation curves, which is usually at-
tributed to dark matter.

Altogether, we conclude the work with the idea of
that the Friedmann’s envisioned geometry could be a
plausible alternative of standard general relativity, in
which dark energy has a purely geometric origin.

The work of L.Cs. is supported by Collegium Talen-
tum Hungary and the StarUBB research scholarship.
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Л.Чiллог, Т.Харко

НАПIВСИМЕТРИЧНА МЕТРИЧНА ҐРАВIТАЦIЯ

У цiй роботi ми вивчаємо геометричне розширення загаль-
ної теорiї вiдносностi, яке базується на зв’язку з особливим
типом кручення. Цей зв’язок полягає у тому, що його тен-
зор кручення повнiстю визначається векторним ступенем
вiльностi, i вiн був вперше введений Фрiдманом i Схоуте-
ном. Ми дослiджуємо його фiзичнi наслiдки, представляю-
чи три космологiчнi моделi в рамках розглянутого геоме-
тричного розширення загальної теорiї вiдносностi, i порiв-
нюємо прогнози моделей з передбаченнями Λ𝐶𝐷𝑀 -моделi
(з холодною темною матерiєю i темною енергiєю), а також
даними спостережень для функцiї Хаббла. Нашi результа-
ти показують, що геометрiя, передбачена Фрiдманом, може
пояснити данi спостережень для функцiї Хаббла без потре-
би в темнiй енергiї.

Ключ о в i с л о в а: космологiчнi моделi, напiвсиметрична
метрична ґравiтацiя, загальна теорiя вiдносностi, тензор
кручення, функцiя Хаббла.
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